
6
TWEAKING THE TREES: BAGGING,

RANDOM FORESTS, AND
BOOST ING

AdaBoost is the best off­the­shelf classifier in the world.
—CART co­inventor Leo Breiman, 1996

XGBoost is the algorithm of choice for many winning teams of machine learning competitions.
—Wikipedia entry, 2022

Here we talk about two general techniques
in ML, bagging and boosting, and apply them

to form extensions of decision tree analy­
sis. The extensions, random forests and tree­based

gradient boosting, are widely used–in fact, even more so
than individual tree methods.

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

6.1 Bias vs. Variance, Bagging, and Boosting

For want of a nail the shoe was lost;
for want of a shoe the horse was lost;
and for want of a horse the man was lost.
—Old proverb

We must always bear in mind that we are dealing with sample data. Some­
times the “population” being sampled is largely conceptual; for example, in
the taxi data in Section 5.3, we are considering the data a sample from the
ridership in all days, past, present, and future. But in any case, there is sam­
pling variation.

In the bike rental data, say, what if the data collection period had gone
one more day? Even this slight change might affect the exact split at the top
of the tree, node 1. And that effect could then change the splits (or possi­
bly non­splits) at nodes 2 and 3 and so on, with the those changes cascading
down to the lowest levels of the resulting tree. Note that not only might the
split points in the nodes change, but the membership of the nodes could
also change. A training set data point that had been in node 2 may now be
in node 3. In other words:

Decision trees can be very sensitive to slight changes in the inputs. That
means they are very sensitive to sampling variation—that is, decision
trees have a high variance.

Recall that splitting a node reduces bias, and that typically reducing bias also
increases variance. But for the reason given above, variance may be espe­
cially problematic in DT settings.

In this chapter, we treat two major methods for handling this problem,
bagging/random forests and boosting. Both take this point of view: “Variance
too high? Well, that means the sample size is too small, so let’s generate
more trees!” But how?

6.2 Bagging: Generating New Trees by Resampling
The term bagging refers to an ML version of a handy tool from modern statis­
tics known as the bootstrap. This consists of drawing many random subsam­
ples from our data, applying our given estimator to each subsample, and
then averaging (or otherwise combining) the results. Here we apply the
bootstrap to decision trees.

Starting with our original data, once again considered a sample from
some population, we’ll generate s new samples from the original dataset. We
generate a new sample by randomly sampling m of our n data points—with
replacement. (We may get a few duplicates.) We’ll fit a tree to each new sam­
ple, thus achieving the above goal of generating more trees, and combine
the results in a manner to be presented shortly. The quantities s and m here
are—you guessed it—hyperparameters.

100 Chapter 6

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

6.2.1 Random Forests
Say we have a new case to be predicted. We will then aggregate the s trees by
forming a prediction for each tree and then combining all those predicted
values to form our final prediction as follows:

• In a numeric­Y setting, the combining would take the form of av­
eraging all the predictions. In the taxi data, for example (Section
5.3), each tree would give us a predicted trip time, and our final pre­
dicted trip time would be the average of all those individual predic­
tions.

• In a classification setting, such as the vertebrae example in Section
2.3, we could combine by using a voting process. For each tree, we
would find the predicted class, NO, DH, or SP, and then see what
class received the most “votes” among the various trees. That would
be our predicted class. Or, we could find the estimated class proba­
bilities for this new case, for each tree, and then average the proba­
bilities. Our predicted class would be whichever one has the largest
average.

So, we do a bootstrap and then aggregation, hence the short name bag­
ging. It is also commonly known as random forests, a specific implementation
by Leo Breiman. (The earliest proposal along these lines seems to be that of
Tin Kam Ho. She called the method random decision forests.) That approach
places a limit on the number of features under consideration for splitting at
any given node, with a different candidate set at each step.

Why might this strategy, which is using a different candidate set of fea­
tures each time, work? Ordinary bagging can result in substantially corre­
lated trees because it tends to choose the same features every time. It can be
shown that the average of positively correlated numbers has a higher vari­
ance than the average of independent numbers. Thus the approach in which
we limit the candidate feature set at each step hopefully reduces variance.

6.2.2 The qeRF() Function
The qe*-series of functions actually includes several for random forests. For
a given application, one may be more accurate or faster than others, but
they all use the general random forest paradigm described previously. We’ll
use qeRF() here.

Recall that the qe* functions all have the following arguments:

data A data frame containing our training data.

yName The name of the column in data containing Y, the outcome vari­
able to be predicted. The user distinguishes between numeric­Y and clas­
sification settings by having this column be numeric or an R factor, re­
spectively.

Tweaking the Trees: Bagging, Random Forests, and Boosting 101

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

holdout Size of the optional holdout set.

Application­specific arguments For example, as the number k of near
neighbors in the case of qeKNN().

Each qe* function is a wrapper interface to a function in a standard R
ML package. In the case of random forests, qeRF() is a wrapper for randomForest

in the package of the same name. The call form is:

qeRF(data, yName, nTree = 500, minNodeSize = 10,

holdout = floor(min(1000,0.1 * nrow(data))))

The application­specific arguments are ntree, which is the number of boot­
strapped trees to generate, and minNodeSize, which is similar to minsplit in
ctree().

6.2.3 Example: Vertebrae Data
Let’s look again at the vertebrae dataset in Section 2.3, now applying ran­
dom forests instead of k­NN. We’ll predict the same hypothetical new case as
in that earlier example:

fit RF model

> rfout <- qeRF(vert,'V7',holdout=NULL)

new case to predict

> z <- vert[1,-7]

> z$V2 <- 18

predict

> predict(rfout,z)

$predClasses

[1] "DH"

$probs

DH NO SL

2 0.532 0.378 0.09

attr(,"class")

[1] "matrix" "array" "votes"

With k­NN, we had predicted the same class, DH, but with slightly different
class probabilities:

> predict(kout,z)

$predClasses

[1] "DH"

$probs

DH NO SL

[1,] 0.6 0.2 0.2

102 Chapter 6

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

The difference between the two sets of probabilities is due both to the fact
that we used two different ML algorithms and to the small n in this dataset
(310), which caused large sample variability.

We used the default values here for nTree and minNodeSize. We could ex­
plore a few other pairs of these hyperparameters and then compare the per­
formance of random forests and k­NN on this dataset.

6.2.4 Example: Remote-Sensing Soil Analysis
Here we will analyze the African Soil Property dataset from Kaggle.1 From
the data site:

Advances in rapid, low cost analysis of soil samples using infrared
spectroscopy, georeferencing of soil samples, and greater avail­
ability of earth remote sensing data provide new opportunities for
predicting soil functional properties at unsampled locations. . . . Digital
mapping of soil functional properties, especially in data sparse re­
gions such as Africa, is important for planning sustainable agricul­
tural intensification and natural resources management.

We wish to predict various soil properties without directly testing the soil.
One important property of this dataset that we have not encountered

before is that it has p > n (that is, more columns than rows). The original
first column, an ID variable, has been removed.

> dim(afrsoil)

[1] 1157 3599

Traditionally, the statistics field has been wary of this kind of setting, as
linear models (Chapter 8) do not work there. One must first do dimension
reduction. Tree­based methods do this as an integral aspect of their opera­
tion, so let’s give it a try using qeRF().

Here are the names of the columns:

> names(afrsoil)

...

[3547] "m659.543" "m657.615" "m655.686" "m653.758" "m651.829" "m649.901"

[3553] "m647.972" "m646.044" "m644.115" "m642.187" "m640.258" "m638.33"

[3559] "m636.401" "m634.473" "m632.544" "m630.616" "m628.687" "m626.759"

[3565] "m624.83" "m622.902" "m620.973" "m619.045" "m617.116" "m615.188"

[3571] "m613.259" "m611.331" "m609.402" "m607.474" "m605.545" "m603.617"

[3577] "m601.688" "m599.76" "BSAN" "BSAS" "BSAV" "CTI"

[3583] "ELEV" "EVI" "LSTD" "LSTN" "REF1" "REF2"

[3589] "REF3" "REF7" "RELI" "TMAP" "TMFI" "Depth"

[3595] "Ca" "P" "pH" "SOC" "Sand"

1. https://www.kaggle.com/c/afsis­soil­properties/data

Tweaking the Trees: Bagging, Random Forests, and Boosting 103

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

Columns 1 through 3594 are the X variables, with cryptic code names.
The remaining columns are Y, some with more easily guessable names. We’ll
predict pH, the soil acidity.

This kind of setting is considered tough. There is a major potential for
overfitting, since with so many features, one or more of them may acciden­
tally look to be a strong predictor due to p­hacking (Section 1.13). Let’s see
how well qeRF() does here.

> set.seed(9999)

> rfo <- qeRF(afrsoil[,c(1:3578,3597)],'pH',holdout=500)

> rfo$testAcc

[1] 0.3894484

> rfo$baseAcc

[1] 0.6858574

Use of the features has cut MAPE almost in half. Note the range under the
pH scale used here:

> range(afrsoil$pH)

[1] -1.886946 3.416117

We are now ready to predict, say, on a hypothetical new case like that of
row 88 in the training data:

> predict(rfo,afrsoil[88,1:3594])

88

0.6068828

We would predict a pH level of about 0.61.

6.3 Boosting: Repeatedly Tweaking a Tree

Imagine a classification problem with just two classes, so Y = 1 or 0, and just
one feature, X, say, age. We fit a tree with just one level. Suppose our rule is
to guess Y = 1 if X > 12.5 and guess Y = 0 if X ≤ 12.5. Boosting would involve
exploring the effect of small changes to the 12.5 threshold on our overall
rate of correct classification.

Consider a data point for which X = 5.2. In the original analysis, we’d
guess Y to be 0. And, here is the point, if we were to move the threshold to,
say, 11.9, we would still guess Y = 0. But the move may turn some misclas­
sified data points near 12.5 to correctly classified ones. If more formerly
misclassified points become correctly classified than vice versa, it’s a win.

So the idea of boosting is to tweak the original tree, thus forming a new
tree, then in turn tweak that new tree, forming a second new tree, and so
on. After generating s trees (s is a hyperparameter), we predict a new case
by plugging it into all those trees and somehow combining the resulting pre­
dicted values.

104 Chapter 6

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

6.3.1 Implementation: AdaBoost
The first proposal made for boosting was AdaBoost. The tweaking involves
assigning weights to the points in our training set, which change with each
tree. Each time we form a new tree, we fit a tree according to the latest set of
weights, updating them with each new tree.

In a numeric­Y situation, to predict a new case with a certain X value,
we plug that value into all the trees, yielding s predicted values. Our final
predicted value in a numeric­Y setting is a weighted average of the individual
predictions. In a classification setting, we would take a weighted average of
the estimated probabilities of Y = 1 to get the final probability estimate, or
use weighted voting.

To make this idea concrete, below is an outline of how the process could
be implemented with ctree(). It relies on the fact that one of the arguments
in ctree(), named weights, is a vector of nonnegative numbers, one for each
data point. Say our response is named y, with features x. Denote the portion
of the data frame d for x by dx.

In the pseudocode code below, we will maintain two vectors of weights:

1. wts will store the current weightings of the various rows in the train­
ing data. Recall that as the boosting process evolves, we will weight
some rows more heavily than others according to their current im­
pact om misclassification.

2. alpha will store the current weights of our various trees. Recall that
in the end, when we do prediction, we will place more weight on
some trees than others.

Here is an outline of the algorithm:

ctboost <- function(d,s) {

uniform weights to begin

wts <- rep(1/n,n)

trees <- list()

alpha <- vector(length=s) # alpha[i] = coefficient for tree i

for(treeNum in 1:s) {

trees[[i]] <- ctree(y ~ x,data=d,weights=wts)

preds <- predict(trees[[i]],dx)

update wts, placing larger weight on data points on which

we had the largest errors (regression case) or which we

misclassified (classification case)

wts <- (computation not shown)

find latest tree weight

alpha[i] <- (computation not shown)

}

l <- list(trees=trees,treeWts=alpha)

class(l) <- 'ctboost'

return(l)

}

Tweaking the Trees: Bagging, Random Forests, and Boosting 105

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

And to predict a new case, newx:

predict.ctboost <- function(ctbObject,newx)

{

trees <- ctbObject$trees

alpha <- ctbObject$alpha

pred <- 0.0

for (i in 1:s) {

pred <- pred + alpha[i] * predict(trees[[i]],newx)

}

return(pred)

}

Since this book is aimed to be nonmathematical, we omit the formulas
for wts and alpha. It should be noted, though, that alpha is an increasing se­
quence, so when we predict new cases, the later trees play a larger role.

The qeML package has a function for AdaBoost, qeAdaBoost(). But it is ap­
plicable to classification settings only, so let’s go right to the next form of
boosting.

6.3.2 Gradient Boosting
In statistics/ML there is the notion of a residual—that is, the difference be­
tween a predicted value and actual value. Gradient boosting works by fitting
trees to residuals. Given our dataset, a rough description of the process is as
follows:

1. Start with some initial tree. Set CurrentTree to it.

2. For each of our data points, calculate the residuals for CurrentTree.

3. Fit a tree to the residuals—that is, take our residuals as the “data” and
fit a tree T on it. Set CurrentTree = T.

4. Go to Step 2.

These steps are iterated for the number of trees specified by the user. Then,
to predict a new case, we plug it into all the trees. The predicted value is sim­
ply the sum of the predicted values from the individual trees.

At any given step, we are saying, “Good, we’ve got a certain predictive
ability so far, so let’s work on what is left over—that is, our current errors.”
Hence our predicted value for any new case is the sum of what each tree pre­
dicts for that case.

6.3.2.1 The qeGBoost() Function
The qe* function for gradient boosting is qeGBoost(), a wrapper for gbm() in
the package of the same name. Its call form is:

qeGBoost(data, yName, nTree = 100, minNodeSize = 10, learnRate = 0.1,

holdout = floor(min(1000, 0.1 * nrow(data))))

106 Chapter 6

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

This is similar to qeRF(), but with a new argument, the learning rate. The lat­
ter is a common notion in ML and will be explained shortly.

NO T E A number of gradient boosting packages are available for R. We chose this one for its
simplicity. Just as was the case above for random forests, other packages may be faster
or more accurate on some datasets, notably qeXGBoost. Here, qeGBoost() sticks to the
“quick and easy” philosophy of the qe* series, but the reader is encouraged to explore
other packages as an advanced topic.

6.3.3 Example: Call Network Monitoring
Let’s first apply boosting to a dataset titled Call Test Measurements for Mo­
bile Network Monitoring and Optimization,2 which rates quality of service
on mobile calls. The aim is to predict the quality rating.

6.3.3.1 The Data
Here is an introduction to the data:

> ds <- read.csv('dataset.csv',stringsAsFactors=TRUE)

> names(ds)

[1] "Date.Of.Test" "Signal..dBm."

[3] "Speed..m.s." "Distance.from.site..m."

[5] "Call.Test.Duration..s." "Call.Test.Result"

[7] "Call.Test.Technology" "Call.Test.Setup.Time..s."

[9] "MOS"

> ds <- ds[,-1]

> head(ds)

Signal..dBm. Speed..m.s. Distance.from.site..m. Call.Test.Duration..s.

1 -61 68.80 1048.60 90

2 -61 68.77 1855.54 90

3 -71 69.17 1685.62 90

4 -65 69.28 1770.92 90

5 -103 0.82 256.07 60

6 -61 68.86 452.50 90

Call.Test.Result Call.Test.Technology Call.Test.Setup.Time..s. MOS

1 SUCCESS UMTS 0.56 2.1

2 SUCCESS UMTS 0.45 3.2

3 SUCCESS UMTS 0.51 2.1

4 SUCCESS UMTS 0.00 1.0

5 SUCCESS UMTS 3.35 3.6

6 SUCCESS UMTS 0.00 1.0

...

Here Y is MOS, the quality of service.
How big is it?

2. https://www.kaggle.com/valeriol93/predict­qoe

Tweaking the Trees: Bagging, Random Forests, and Boosting 107

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

> dim(ds)

[1] 105828 8

Now, let’s fit the model.

6.3.3.2 Fitting the Model
With over 100,000 data points and just 8 features, overfitting should not be
an issue in this dataset. It easily satisfies our rough rule of thumb, p <

√
n

(Section 3.1.3). So, let’s not bother with a holdout set. There is still some
randomness in the algorithm, though, so for consistency, let’s set the ran­
dom seed.

> set.seed(9999)

> gbout <- qeGBoost(ds,'MOS',nTree=750,holdout=NULL)

The default value for nTree is only 100, but we tried a much larger number,
750, for reasons that will become clear below.

Let’s do a prediction. Say we have a case like ds[3,], but with distance
being 1,500 and duration 62:

> ds3 <- ds[3,-8]

> ds3[,3] <- 1500

> ds3[,4] <- 62

> predict(gbout,ds3)

[1] 2.462538

6.3.3.3 Hyperparameter: Number of Trees
But should we have used so many trees? After all, 750 may be overfitting.
Maybe the later trees were doing “noise fitting.” The package has a couple
of ways of addressing that issue, one of which is to use the auxiliary function
gbm.perf(). Applied to the output of gbm(), it estimates the optimal number
of trees.

As noted, qeGBoost() calls gbm() and places the output of the latter in the
gbmOuts component of its own output. So, we are able to call gbm.perf():

> gbm.perf(gbout$gbmOuts)

See the output graph in Figure 6­1. The dashed vertical line shows the esti­
mated “sweet spot”—that is, the best number of trees, 382 in this case. (This
value is also printed to the R console.)

108 Chapter 6

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

Figure 6-1: Output from gbm.perf

But we need not refit the model. We can change the number of trees in
the prediction:

> predict(gbout,ds3,newNTree=382)

[1] 2.45214

Since we did not form a holdout set, we’ll need to calculate MAPE man­
ually:

> mean(abs(preds - ds[,8]))

[1] 0.6142699

Details on other features of the gbm package are available in its documen­
tation.

6.3.4 Example: Vertebrae Data
Boosting can be used in classification settings as well as numeric­Y cases.
(And its usage is probably much more common on the classification side.)
Here is qeGBoost() applied to the the vertebrae data (Section 2.3).

> set.seed(9999)

> gbout <- qeGBoost(vert,'V7')

And, say we were to predict a new case like that of row 12 in the training set:

> predict(gbout,vert[12,-7])

$predClasses

[1] "DH"

Tweaking the Trees: Bagging, Random Forests, and Boosting 109

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

$probs

DH NO SL

[1,] 0.6283904 0.3694108 0.002198735

attr(,"class")

[1] "qeGBoost"

We predict DH, with an estimated probability of about 0.63. (Unfortu­
nately, gbm.perf() is not available for the multiclass case.)

6.3.5 Bias vs. Variance in Boosting
Boosting is “tweaking” a tree, potentially making it more stable, especially
since we are averaging many trees, thus smoothing out “For want of a nail . . .”
problems. So, it may reduce variance. By making small adjustments to a
tree, we are potentially developing a more detailed analysis, thus reducing
bias.

But all of that is true only “potentially.” Though the tweaking process
has some theoretical basis, it still can lead us astray, actually increasing bias
and possibly increasing variance too. If the hyperparameter s is set too large,
producing too many trees, we may overfit.

6.3.6 Computational Speed
Boosting can take up tons of CPU cycles, so we may need something to speed
things up. The n.cores argument in gbm() tries to offload computation to dif­
ferent cores in your machine. If you have a quad core system, you may try
setting this argument to 4, or even 8 (and then call gbm() directly rather than
through qeGBoost()).

6.3.7 Further Hyperparameters
Boosting algorithms typically have a number of hyperparameters. We have
already mentioned nTree (n.trees in gbm()), which is the number of trees to be
generated.

Another hyperparameter is minNodeSize (n.minobsinnode in gbm()), which is
the minimum number of data points we are willing to have in one tree node.
As we saw in Chapter 5, reducing this value will reduce bias but increase vari­
ance.

The shrinkage hyperparameter is so important in the general ML context
that we’ll cover it in a separate subsection, next.

6.3.8 The Learning Rate
The notion of a learning rate comes up often in ML. We’ll describe it here
in general and then explain how it works for gradient boosting. We’ll see it
again in our material on support vector machines (Chapter 10) and neural
networks (Chapter 11).

110 Chapter 6

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

This section has a bit of math in it, in the form of curves and lines tan­
gent to them, which is an exception to the avowedly nonmathematical na­
ture of this book. But there are still no equations, and even math­averse
readers should be able to follow the discussion.

6.3.8.1 General Concepts
Recall that in ML methods we are usually trying to minimize some loss func­
tion, such as MAPE, or the overall misclassification error OME. Computa­
tionally, this minimization can be a challenge.

Consider the function graphed in Figure 6­2. It is a function of a one­
dimensional variable x, whereas typically our x is high­dimensional, but it will
make our point.

Figure 6-2: A function to be minimized

There is an overall minimum at approximately x = 2.2. This is termed
the global minimum. But there is also a local minimum, at about x = 0.4; that
term means that this is the minimum value of the function only for points
near—“local to”— 0.4. Let’s give the name x0 to the value of x at the global
minimum.

To us humans looking at the graph, it’s clear where x0 is, but we need
our software to be able to find it. That may be problematic. Here’s why:

Most ML algorithms use an iterative approach to finding the desired
minimum point x0. This involves a series of guesses for x0. The code starts
with an initial guess, g0, say, randomly chosen, then evaluates f(g0). Based on
the result, the algorithm then somehow (see below) updates the guess to g1.
It then evaluates f(g1), producing the next guess, g2, and so on.

The algorithm keeps generating guesses until they don’t change much,
say, until |gi+1 – gi| < 0.00000001 for step i. We say that the algorithm has

Tweaking the Trees: Bagging, Random Forests, and Boosting 111

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

converged to this point. Let’s give the name c to that value of i. It then reports
x0, the global minimum point, to be the latest guess, gc.

So, what about that “somehow” alluded to above? How does the algo­
rithm generate the next guess from the present one? The answer lies in the
gradient. In our simple example here with x being one­dimensional, the gra­
dient is the slope of the function at the given point—that is, the slope of the
tangent line to the curve.

Say our initial guess g0 = 1.1. The tangent line is shown in Figure 6­3.
The line is pointing upward to the right—that is, it has positive slope—so it
tells us that by going to the left we will go to smaller values of the function.
We want to find the point at which f() is smallest, and the tangent line is say­
ing, “Oh, you want a smaller value than f(1.1)? Move to the left!” But actually
we should be moving to the right, toward 2.2, where the global minimum is.

Figure 6-3: Function to be minimized, plus tangent

So, the reader can already see that iterative algorithms are fraught with
danger. Worse, it also adds yet another hyperparameter: we must decide not
only in which direction to move for our next guess but also how far to move in
that direction. The learning rate addresses the latter point.

As noted, we should be moving to the right from 1.1, not to the left. The
function f(x) is fooling the algorithm here. Actually, in this scenario, our al­
gorithm may converge to the wrong point. Or it may not even converge at
all and just wander aimlessly.

This is why typical ML packages allow the user to set the learning rate.
Small values may be preferable, as large ones may result in our guesses lurch­
ing back and forth, always missing the target. On the other hand, if it is too
small, we will just inch along, taking a long time to get there. Or worse, we
converge to a local minimum.

112 Chapter 6

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

Once again, we have a hyperparameter that we need to be at a “Goldilocks”
level—not too large and not too small—and may have to experiment with vari­
ous values.

6.3.8.2 The Learning Rate in gbm
This is the shrinkage argument in gbm(), called learnRate in qeGBoost(). Say we
set it to 0.2. Recall the pseudocode describing gradient boosting in Section
6.3.2. The revised version is this:

1. Start with an initial tree. Set CurrentTree to it.

2. For each of our data points, calculate the residuals for CurrentTree.

3. Fit a tree to the residuals—that is, take our residuals as the “data”
and fit a tree T on it. Set CurrentTree to the old CurrentTree, plus
shrinkage * T.

4. Go to Step 2.

Here, shrinkage * T means multiplying all the values in the terminal nodes
of the tree by the factor shrinkage. In the end, we still add up all our trees to
produce the “supertree” used in prediction of new cases.

Again, a small value of shrinkage is more cautious and slower, and it may
cause us to need more trees in order to get good predictive power. But it
may help prevent overfitting.

6.4 Pitfall: No Free Lunch

There is no such thing as a free lunch.
—Old economics saying

Though Leo Breiman had a point on the considerable value of AdaBoost
(especially in saying “off the shelf,” meaning usable with just default values
of hyperparameters), that old saying about no free lunch applies as well. As
always, applying cross­validation and so on is indispensable to developing
good models.

Similar advice concerns another famous Breiman statement: that it is
impossible to overfit using random forests. The reader who has come this
far in this book will immediately realize that Breiman did not mean his state­
ment in the way some have interpreted it. Any ML method may overfit.
What Breiman meant was that it is impossible to set the value of s, the num­
ber of trees, too high. But the trees themselves still can overfit, for exam­
ple, by having too small a minimum value for the number of data points in a
node or, for that matter, by including too many features.

Tweaking the Trees: Bagging, Random Forests, and Boosting 113

The Art of Machine Learning (Sample Chapter) © 1/20/23 by Norman Matloff

