
In Chapter 5, I detailed string and bool-
ean data types. In this chapter, I’ll pivot to 

numeric data types, specifically the integer 
and floating-point data types, investigating 

them in great detail. Batch handles integers with ease, 
whether they be of the decimal, hexadecimal, or octal 
variants.

However, floating-point numbers are similar to booleans in that Batch 
doesn’t actually support them explicitly as a data type. But once again, that 
limitation affords the imaginative Batch coder with an opportunity to be 
inventive, and that’s exactly what we’ll do before this chapter is done.

An Octals Case Study
August 1, some year in the aughts: I can’t remember the exact year, but of 
the month and date I am quite certain, for reasons that will be clear by the 
end of this chapter.

6
I N T E G E R  A N D  F L O A T  D A T A  T Y P E S

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



2   Chapter 6

I was still relatively new to Batch, but I knew more than many, so a co-
worker came to me with a task with which he had been struggling. In the 
Batch code he needed to determine the prior day’s date given only the 
current date. That’s pretty straightforward for most days of the year, but it 
becomes complicated when today’s date is the first of the month. Months 
have different lengths; New Year’s Day poses a unique challenge; leap years 
happen every four years, except for when they don’t.

This initial event occurred in February, maybe March, and it was an 
interesting little exercise that I coded up and tested. Like any good coder, 
I tested the first day of the year and the last. I also tested the first day of a 
handful of months, particularly the extremes, like January and December. 
I tested March 1 for several different years, not because I was coding this 
around February but because of the peculiarities of leap years. In short 
order, I handed over the code and moved on to other projects.

The code worked great for about six months. Then on August 1 it 
suddenly didn’t. I don’t remember the downstream consequence, but my 
co-worker spent a good chunk of time tracking down the root cause. He 
eventually zeroed in on my bat file but couldn’t figure out why it stopped 
working on that day. His boss would hear none of it—code doesn’t work for 
half of a year and then just blow up. My co-worker must have made some 
sort of change that broke the process, and he was challenged to find it.

That search ended up wasting half of his workday, but after much due 
diligence he finally brought the failure to me. I opened the execution log, 
found the results of the logic that attempted to find the date before 08/01, 
and . . .

I looked skyward, raised my hands, and with Shatnerian melodrama 
screamed “OCTAL!” I am embellishing, slightly—the moment was not as 
dramatic as Khan stranding Captain Kirk (played by William Shatner with 
Shakespearian flare) in the center of a dead planet in Star Trek II: The Wrath 
of Khan, but for me at least it was quite memorable.

What in the execution log upset me so? Let’s find out, but before delv-
ing into octals, I’ll start with integers.

Integers
We have already used the set command for alphanumeric values, but it’s 
also used for arithmetic with the /A option. Recall what happens with a 
statement such as this:

set x=4+5

The variable denoted by x is set to the text 4+5.
Using the /A option turns it into an arithmetic set command, so the fol-

lowing results in the x variable being set to the number 9:

set /A x=4+5

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



Integer and Float Data Types   3

The /A option transforms the set command into a means to perform addi-
tion and other arithmetic operations. Those previous values are obviously 
hardcoded as numeric.

A slightly more interesting example involves setting variables to 
numeric values and then adding them via the set /A command, as shown in 
Listing 6-1.

set nbr1=4
set nbr2=5
set /A sum = nbr1 + nbr2
>con echo The sum is %sum%.

Listing 6-1: Adding two numeric variables via the set /A command

The console output is The sum is 9., and Listing 6-1 demonstrates that 
the /A option has altered the set command significantly—three times. 
First and most obviously, arithmetic is unlocked. Second, there are spaces 
around the equal sign, and in Chapter 2 I made a rather large point of the 
danger of doing that. To demonstrate, this command lacking the /A option

set myVar = X

does not set myVar to X. It sets a variable with a six-character name, myVar 
with a trailing space, to the two-character value of a space followed by X. 
By comparison, the /A option makes the set command behave more like an 
assignment operator of a modern language in that spaces in the command 
are not treated as parts of variable names or values; refreshingly, they are 
just spaces.

These three commands are all functionally equivalent; each sets myVar 
to 7:

set myVar=7
set /A myVar=7
set /A myVar = 7

To get the desired result without the /A option, spaces cannot exist 
around the equal sign. However, with the /A option they can exist, but they 
also aren’t required, which is the second significant difference unlocked 
with the /A option.

The third difference in Listing 6-1 is that the variables nbr1 and nbr2 are 
not surrounded by percent signs. Hence, the /A option allows you to resolve 
variables without the ubiquitous delimiters. In a nod to flexibility, you still 
can use the percent signs and embedded spaces, or not, so these four state-
ments are logically equivalent:

set /A result = nbr1 + nbr2
set /A result = %nbr1% + %nbr2%
set /A result=nbr1+nbr2
set /A result=%nbr1%+%nbr2%

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



4   Chapter 6

The spaces make the code much more readable, so I advise against the last 
two options in the previous code. The first option is the cleanest, but some 
people are so used to having percent signs surround variables that the sec-
ond option might provide comforting consistency.

Let’s take one more pass at the set /A command from Listing 6-1, but 
this time, executed at the very beginning of a bat file:

set /A sum = nbr1 + nbr2
> con echo The sum is %sum%.

The resulting value of sum written to the console will be 0. Because nbr1 
and nbr2 are not yet defined, and unlike unset variables used in the alpha-
numeric context that default to null, unset variables used in the numeric 
context are considered to be zero. Since neither is set, the arithmetic 0 + 0 
results in 0.

W A R N I N G  The range of permissible integers includes the values –2,147,483,648 through 
2,147,483,647, inclusive. Batch stores numbers as 32-bit signed fields, so any integer 
will take on one of these 232 values. This rarely poses a problem, but because the code 
is not compiled, take care to ensure that the data being processed conforms to the limi-
tation. The code won’t abort, nor will it hang; it’ll simply fail to calculate the correct 
value. Batch is not the preferred language for macroeconomics.

Batch Arithmetic
Batch arithmetic does more than simple addition. The following listing 
shows the five primary arithmetic operations (addition, subtraction, multi-
plication, division, and modulo division) and their syntaxes:

set /A sum = nbr1 + nbr2
set /A difference = nbr1 - nbr2
set /A product = nbr1 * nbr2
set /A quotient = nbr1 / nbr2
set /A modulo = nbr1 %% nbr2

The operators are similar to those in other programming languages, 
but note the double percent sign for modulo division. The help command 
shows a single percent sign, but the correct Batch syntax requires two. (In 
reality the modulo character is just a single percent sign, but the first per-
cent sign is actually escaping the second. If this doesn’t make much sense 
right now, hold that thought for Chapter 14, but use two characters for now.)

Now let’s execute these arithmetic commands, but first we’ll define 
the two operands, nbr1 and nbr2. The results are shown to the right of each 
statement as a comment (as mentioned previously, the ampersand separates 
two commands, and the second one can be a rem command):

set nbr1=7
set nbr2=2

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



Integer and Float Data Types   5

set /A sum = nbr1 + nbr2           &rem sum=9
set /A difference = nbr1 - nbr2    &rem difference=5
set /A product = nbr1 * nbr2       &rem product=14
set /A quotient = nbr1 / nbr2      &rem quotient=3
set /A modulo = nbr1 %% nbr2       &rem modulo=1

The addition, subtraction, and multiplication operations produce no 
surprises, but dividing 7 by 2 returns 3 rather than 3.5, because Batch arith-
metic handles only integers and truncates the decimal portion of the result. 
Dividing 19 by 10 doesn’t yield 1.9, and it won’t even return the rounded 
value of 2. The intermediate result of 1.9 is truncated to 1.

Modulo is a useful operator that returns the remainder. Modulo n 
returns the values 0 through n – 1, so the modulo 2 operation returns 0 for 
even numbers because 2/2, 4/2, 6/2, and so on are integers and do not pro-
duce a remainder. Odd numbers return 1, because 3/2, 5/2, 7/2, and so on 
all have a remainder of 1.

Oddly, Batch doesn’t support the exponential or power function, which 
is a source of frustration for some but an impetus for creativity for others. 
You can create a routine that takes in a base and an exponent and returns 
the exponential result (and I’ll do just that in Chapter 18).

Augmented Assignment Operators
Augmented assignment operators can streamline the code when you want 
to add a number to a variable and store the result in that same variable. The 
most obvious example is a simple counter where you might want to increment 
a variable by one for each execution of the set command, for example:

set /A veryVerboseTallyVariable = veryVerboseTallyVariable + 1

I intentionally chose a verbose and cumbersome variable name because try 
as we coders might, they sometimes become nearly unavoidable.

The following syntax is logically identical, condensed, and easier to 
comprehend:

set /A veryVerboseTallyVariable += 1

The next command adds 17 to a far more succinctly named variable:

set /A nbr += 17

Likewise, the following set commands subtract 2, multiply by 2, divide 
by 2, and perform modulo 2 division, respectively:

set /A nbr -= 2
set /A nbr *= 2
set /A nbr /= 2
set /A nbr %%= 2

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



6   Chapter 6

Again, note the double percent signs for the modulo division. Many expe-
rienced Batch coders don’t know that the augmented assignment opera-
tors are available in Batch, wrongly assuming that they exist only in more 
modern languages, but they do exist, and you should use them when 
appropriate.

Order of Operation
You can do more complex arithmetic with the order of operation rules 
from mathematics. You might have learned the PEMDAS acronym in a 
pre-algebra class (or “Please Excuse My Dear Aunt Sally” as a mnemonic) 
for “parentheses, exponents, multiplication and division, and addition 
and subtraction.” For Batch we have PMDAS, which is a whole lot harder 
to pronounce, but as mentioned, exponents aren’t supported (maybe the 
mnemonic “Please Make Dessert Aunt Sally” will catch on). Let’s take this 
example:

set /A nbr = 3 * (1 + 2) / 4 - 5

First the 1 and the 2 are added to make 3 because they are in parenthe-
ses, even though addition and subtraction are last in the order of operation. 
Multiplication and division share the same hierarchy, so the interpreter 
performs them from left to right. The 3 leading the expression is multiplied 
by the 3 from the addition, giving us 9, and 9 is then divided by 4, resulting 
in 2.25. Actually, that’s truncated, so it’s simply 2. Finally, subtract 5, and -3 
is the result.

This example is pedagogical only, because it would be far simpler just 
to set nbr to -3. In practice, a mix of hardcoded numbers and variables will 
be used. For example:

set /A nbr = ((nbr1 + nbr2) * -10) / 4 

The outer parentheses here are unnecessary by the rules of PMDAS, but 
they make the statement more readable.

Augmented assignment operators can also work with more complex 
expressions. These two statements are logically identical:

set /A nbr = nbr + (2 * (4 + nbr) - -5)
set /A nbr += 2 * (4 + nbr) - -5

In both commands the variable nbr is being incremented by a mathemati-
cal expression also containing nbr, with the only difference being that the 
second command uses the augmented assignment operator. Based on the 
order of operations, both add 4 to the variable, double it, and subtract –5. 
(Subtracting –5 is equivalent to adding 5.) Ultimately, the result of this 
expression is the amount by which nbr is incremented.

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



Integer and Float Data Types   7

Octal and Hexadecimal Arithmetic
Batch supports both octal and hexadecimal arithmetic. Both number sys-
tems are more similar to the way a computer thinks than base 10, so it’s use-
ful for a coder to understand them and be able to use them.

The decimal number system is base 10 and uses the digits 0 to 9. There 
is no digit for 10; instead, there are two digits: a new place value starts with 
1, while the ones place restarts at 0, hence 10. In contrast, the octal number 
system is base 8, using the digits 0 to 7. Adding 1 to the octal 7 does not 
produce 8, because 8 (and 9) are meaningless characters in the octal num-
ber system. Instead, the octal number 10 (pronounced “one-zero” because it 
is not “ten”) is equivalent to the decimal number 8. Likewise, the octal 11 is 
equal to the decimal 9, and so on.

The hexadecimal number system is base 16, so it has the opposite 
problem of octal: it needs 16 unique digits, more than the 10 used in 
most human number systems on account of our having evolved to possess 
five digits on each of two hands. After counting from 0 to 9, we have the 
“numbers” A, B, C, D, E, and F. The hexadecimal number B is equal to 
the decimal number 11, the hexadecimal F equals the decimal 15, and the 
hexadecimal 10 is equal to the decimal 16.

Batch can perform arithmetic with octal, hexadecimal, and/or decimal 
inputs, while always returning the answer as a decimal. Hexadecimal num-
bers are preceded with 0x, and octal numbers are preceded with 0 alone. 
Hence, these two variables are assigned octal and hexadecimal values, 
respectively:

set octalNbr=012
set hexadecimalNbr=0xB

Regardless of the base of the operands—decimal, octal, or hexadecimal— 
Batch always stores the result as a decimal. To demonstrate, first take this 
example:

set decimal7=7
set decimal1=1
set octal7=07
set octal1=01

set /A decimal = decimal7 + decimal1
set /A octal = octal7 + octal1

The numerals 7 and 1 are being added as decimals and octals. The 
decimal result is obviously 8. The sum of the two octal numbers is octal 10 
(“one-zero,” not decimal 10), but the interpreter immediately stores the 
value as a decimal 8. In this example, decimals and octals behave the same 
way, but that’s not always true.

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



8   Chapter 6

Now take this example:

set decimal11=11
set decimal2=2
set octal11=011
set octal2=02
  
set /A decimal = decimal11 + decimal2 
set /A octal = octal11 + octal2
> con echo The decimal sum is %decimal%.
> con echo The octal sum is %octal%.

The decimal addition yields decimal 13, while the octal addition yields 
octal 13 (“one-three,” not decimal 13). Remember, the octal number system 
has no 8 or 9. Octal 10 is decimal 8, and in this example octal 13 is deci-
mal 11. Therefore, in Batch, 11 + 2 = 13, but 011 + 02 = 013 = 11, so the fol-
lowing result is displayed:

The decimal sum is 13.
The octal sum is 11.

The interpreter can even handle arithmetic with a mixture of decimal 
and octal values. The decimal addition of 10 + 10 is 20, and the octal addi-
tion of 010 + 010 is 16. When adding a decimal and an octal, say 10 + 010, 
Batch gives the correct result of 18. Usually, this type of arithmetic is done 
by accident, but sometimes savvy coders will use this to their advantage, and 
it’s good to know that it’s possible.

In a similar fashion, these values are treated as hexadecimals:

set /A hexadecimalNbr = 0xA * 0x14

With this multiplication, 0xA is equal to decimal 10, and 0x14 is four 
more than 16 when converted to decimal. After this statement executes, the 
variable is equal to 200, the product of 10 and 20.

Octals and hexadecimals can be powerful tools; however, be careful to 
ensure that there are no leading zeros if you are intending to do decimal 
arithmetic. Since hexadecimals start with 0x, accidentally performing hexa-
decimal arithmetic is far more difficult, but unknowingly performing octal 
arithmetic because of a seemingly innocuous leading zero is exceedingly 
easy.

N O T E  Because math is all around us, you’ll find boxes containing various examples of bat 
file arithmetic in Chapters 16, 18, and 21. Batch also has arithmetic operators for 
bit manipulation: bitwise and, bitwise or, bitwise exclusive or, logical shift left, and 
logical shift right. I’ll wait until Chapter 30 to explore them because these operators 
use some special characters that have other uses and because many experienced coders 
have never manipulated a bit in compiled code, much less Batch.

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



Integer and Float Data Types   9

Floating-Point Numbers
Batch doesn’t explicitly handle floating-point numbers—that is, non-
integer rational numbers. In fact, if extensive processing is to be done 
on such numbers, there are better tools to use than Batch. It would be 
analogous to digging a foundation for a house with a spade shovel. It can 
be done, but only by the most austere ascetic. If the task is big enough, 
write some compiled code and call it from the bat file, but when some 
lightweight floating-point arithmetic needs to be done, Batch can handle 
it, just as you can use the spade shovel to plant a couple tulip bulbs in the 
front yard.

Keep in mind that all Batch variables are really just glorified strings. We 
can easily assign a couple of variables floating-point values—that is, some 
numbers with a period for the decimal point. Here are two amounts in dol-
lars and cents:

set amt1=1.99
set amt2=2.50

If these were integers, we could simply add them with the set /A com-
mand. Let’s try it and see what happens:

set /A sum = amt1 + amt2

The result is the value 3 being stored in the sum, not the hoped-for 4.49. The 
decimal part of each number is completely ignored, resulting in the sum of 
the integers 1 and 2.

We need to remove the decimal place, do the arithmetic, and restore 
the decimal place. Multiplying each amount by 100 would do the trick, but 
again, Batch isn’t going to allow that. Since the floating-point value is just a 
disguised string, however, we can remove the decimal point with the syntax 
described in the previous chapter:

set amt1=%amt1:.=%
set amt2=%amt2:.=%

Now the amounts are 199 and 250. The following set /A command 
results in 449:

set /A sum = amt1 + amt2

To restore the decimal, we can’t simply divide by 100—once again, that 
works only for integers, but we can use more of the string-parsing logic 
from the previous chapter. Using substringing, the following set command 
resets the variable to a concatenation of three items: everything but the  
last two bytes of the number, a hardcoded decimal place (aka dot), and  
the last two bytes of the number:

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



10   Chapter 6

set sum=%sum:~0,-2%.%sum:~-2%
> con echo The sum is %sum%.

Finally, the variable written to the console has been set to 4.49.
Multiplication works the same way. If you buy that new computer for 

$499 with no payments for the first year and an interest rate of 19 percent, 
how much will you owe a year from now? The interest rate translates to a 
factor of 1.19, but again we must remove the decimal place. After finding 
the product of two integers, we restore the decimal place by inserting it 
before the last two bytes, as shown in Listing 6-2.

set amt=499
set factor=1.19
set factor=%factor:.=%
set /A product = amt * factor
set product=%product:~0,-2%.%product:~-2%
> con echo The product is %product%.

Listing 6-2: Multiplication of an integer and a floating-point number 

The product of 593.81 might make you reconsider the financing plan.
The goal of every coder should be to write “bullet-proof” code—unfor-

tunately, the previous offering is more of a cotton mesh than Kevlar, and 
there are a number of batveats to discuss. We’ve made several assump-
tions, and if any one of them is violated, the code will break. The addition 
assumes that both numbers have two decimal places; 1.9 instead of 1.90 
will throw off the result by a factor of 10. A non-numeric character, other 
than the decimal place, will cause issues, and a leading zero on the value 
will trigger octal arithmetic. The multiplication is even more complicated. 
Listing 6-2 contains an integer amount, but if amt had been expressed in 
dollars and cents, the product would have resulted in four decimal places, 
not two. To represent the result as dollars and cents, the last two bytes 
should be truncated—or better yet, rounded.

I won’t go into these nuances here for the simple reason that if the 
inputs are not consistent and data validation is required, Batch floating-
point arithmetic may not be the optimal solution. Coding for all possible 
situations would be tedious at best. What’s important is that the coder 
understands the options at hand. If all the values have a consistent number 
of decimal places, one can do the arithmetic with just a few lines of code. 
On the rare instance when I have resorted to using the floating-point data 
type in Batch, it has been for a very specific task involving consistent data. 
Break out that spade shovel, but only when appropriate.

An Octals Case Study, Continued
So, what exactly did I find in that execution log on that first day of August 
of a year early in the millennium? In the bat file, today’s date was formatted 

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



Integer and Float Data Types   11

as CCYYMMDD, for instance 20050801, which was broken down into three 
discrete fields:

todaysYear = 2005
todaysMonth = 08
todaysDay = 01

If todaysDay is anything other than 01, we simply subtract 1 from the 
eight-digit number and move on. But when it is 01, we need to do some addi-
tional arithmetic. Considering just the month logic (and understanding 
that there’ll be some special logic for January), we must subtract 1 to deter-
mine the prior month:

set /A month = todaysMonth - 1

When todaysMonth is 03, the month is 2; when todaysMonth is 07, the month is 6. 
But when todaysMonth is 08 as it is on August 1, the month in the previous arith-
metic resolves to the value of -1.

The interpreter sees the leading 0 and treats the arithmetic as octal 
arithmetic. Octal understands only the digits 0 through 7, so when the 
interpreter sees 8, it considers the character to be as foreign as “ohkuh” 
(the numeral corresponding to eight in the Vulcan language) and simply 
ignores it. Ultimately, the set /A command assigns the mathematical result 
of what remains of the expression, which is -1, to the month variable. This 
value ends up breaking the date logic, and we fail to get the desired date of 
July 31.

“OCTAL!”
Using substringing and the if command, I inserted this one-line fix to 

strip the leading zero, if present, off the value of the todaysMonth variable:

if %todaysMonth:~0,1% equ 0  set todaysMonth=%todaysMonth:~1%

The code worked fine for years to come, even on the firsts of August 
and September. If the original code hadn’t been run on August 1, it would 
have failed if run on September 1, since September is denoted by 09. But 
what if the code hadn’t been run on either of those days? When would it 
fail next? On October 1, the month would be denoted as 10. The interpreter 
would have treated that like a decimal, and the code would have performed 
as expected. So, the firsts of August and September are the only dates capa-
ble of breaking the code.

Be very aware of octal.

Summary
In this chapter, I discussed numeric data types and how they are treated 
in Batch. Unlike most other languages, Batch variables are not defined as 
a certain data type. Intrinsically, all variables are simple strings, but when 
that string contains a number, it can be treated as numeric.

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney



12   Chapter 6

Addition, subtraction, multiplication, division, and even modulo divi-
sion work on decimal integers with relative ease, using the order of opera-
tion rules you likely learned in school. Octal and hexadecimal integers are 
also supported, although octal arithmetic can all too easily be invoked in 
error. Take it from my personal experience and ensure that your decimal 
integers are not prefixed with any zeros. Augmented assignment operators 
offer a handy and underutilized tool for incrementing integers.

The floating-point numeric data type isn’t supported in Batch, but 
you’ve learned that with a little work, you can perform some lightweight 
arithmetic on numbers with a decimal point.

Changing gears, I’ll discuss file movements in the next chapter. An 
immensely useful feature of Batch is the creating, copying, moving, renam-
ing, and deleting of files and directories.

The Batch Coding Language (Sample Chapter) © 12/12/23 by Jack McLarney




