
2
NUMERICS, ARITHMETIC,

ASSIGNMENT, AND VECTORS

In its simplest role, R can function as a
mere desktop calculator. In this chapter,

I’ll discuss how to use the software for arith-
metic. I’ll also show how to store results so you

can use them later in other calculations. Then, you’ll
learn about vectors, which let you handle multiple
values at once. Vectors are an essential tool in R, and much of R’s function-
ality was designed with vector operations in mind. You’ll examine some
common and useful ways to manipulate vectors and take advantage of
vector-oriented behavior.

2.1 R for Basic Math
All common arithmetic operations and mathematical functionality are ready
to use at the console prompt. You can perform addition, subtraction, mul-
tiplication, and division with the symbols +, -, *, and /, respectively. You can
create exponents (also referred to as powers or indices) using ^, and you con-
trol the order of the calculations in a single command using parentheses, ().

2.1.1 Arithmetic
In R, standard mathematical rules apply throughout and follow the usual
left-to-right order of operations: parentheses, exponents, multiplication,
division, addition, subtraction (PEMDAS). Here’s an example in the
console:

R> 2+3

[1] 5

R> 14/6

[1] 2.333333

R> 14/6+5

[1] 7.333333

R> 14/(6+5)

[1] 1.272727

R> 3^2

[1] 9

R> 2^3

[1] 8

You can find the square root of any non-negative number with the sqrt

function. You simply provide the desired number to x as shown here:

R> sqrt(x=9)

[1] 3

R> sqrt(x=5.311)

[1] 2.304561

When using R, you’ll often find that you need to translate a complicated
arithmetic formula into code for evaluation (for example, when replicating
a calculation from a textbook or research paper). The next examples pro-
vide a mathematically expressed calculation, followed by its execution in R:

102 +
3 × 60

8
− 3

R> 10^2+3*60/8-3

[1] 119.5

53 × (6 − 2)
61 − 3 + 4

R> 5^3*(6-2)/(61-3+4)

[1] 8.064516

22+1 − 4 + 64−22.25− 1
4

R> 2^(2+1)-4+64^((-2)^(2.25-1/4))

[1] 16777220

(
0.44 × (1 − 0.44)

34

) 1
2 R> (0.44*(1-0.44)/34)^(1/2)

[1] 0.08512966

18 Chapter 2

Note that some R expressions require extra parentheses that aren’t
present in the mathematical expressions. Missing or misplaced parenthe-
ses are common causes of arithmetic errors in R, especially when dealing
with exponents. If the exponent is itself an arithmetic calculation, it must
always appear in parentheses. For example, in the third expression, you
need parentheses around 2.25-1/4. You also need to use parentheses if the
number being raised to some power is a calculation, such as the expression
22+1 in the third example. Note that R considers a negative number a cal-
culation because it interprets, for example, -2 as -1*2. This is why you also
need the parentheses around -2 in that same expression. It’s important to
highlight these issues early because they can easily be overlooked in large
chunks of code.

2.1.2 Logarithms and Exponentials
You’ll often see or read about researchers performing a log transformation
on certain data. This refers to rescaling numbers according to the logarithm.
When supplied a given number x and a value referred to as a base, the log-
arithm calculates the power to which you must raise the base to get to x.
For example, the logarithm of x = 243 to base 3 (written mathematically as
log3 243) is 5, because 35 = 243. In R, the log transformation is achieved
with the log function. You supply log with the number to transform, assigned
to the value x, and the base, assigned to base, as follows:

R> log(x=243,base=3)

[1] 5

Here are some things to consider:

• Both x and the base must be positive.

• The log of any number x when the base is equal to x is 1.

• The log of x = 1 is always 0, regardless of the base.

There’s a particular kind of log transformation often used in mathe-
matics called the natural log, which fixes the base at a special mathematical
number—Euler’s number. This is conventionally written as e and is approxi-
mately equal to 2.718.

Euler’s number gives rise to the exponential function, defined as e raised
to the power of x, where x can be any number (negative, zero, or positive).
The exponential function, f (x) = ex , is often written as exp(x) and repre-
sents the inverse of the natural log such that exp(loge x) = loge exp(x) = x.
The R command for the exponential function is exp:

R> exp(x=3)

[1] 20.08554

Numerics, Arithmetic, Assignment, and Vectors 19

The default behavior of log is to assume the natural log:

R> log(x=20.08554)

[1] 3

You must provide the value of base yourself if you want to use a value
other than e. The logarithm and exponential functions are mentioned here
because they become important later on in the book—many statistical meth-
ods use them because of their various helpful mathematical properties.

2.1.3 E-Notation
When R prints large or small numbers beyond a certain threshold of sig-
nificant figures, set at 7 by default, the numbers are displayed using the
classic scientific e-notation. The e-notation is typical to most programming
languages—and even many desktop calculators—to allow easier interpreta-
tion of extreme values. In e-notation, any number x can be expressed as xey,
which represents exactly x × 10y . Consider the number 2,342,151,012,900.
It could, for example, be represented as follows:

• 2.3421510129e12, which is equivalent to writing 2.3421510129 × 1012

• 234.21510129e10, which is equivalent to writing 234.21510129 × 1010

You could use any value for the power of y, but standard e-notation
uses the power that places a decimal just after the first significant digit. Put
simply, for a positive power +y, the e-notation can be interpreted as “move
the decimal point y positions to the right.” For a negative power −y, the inter-
pretation is “move the decimal point y positions to the left.” This is exactly
how R presents e-notation:

R> 2342151012900

[1] 2.342151e+12

R> 0.0000002533

[1] 2.533e-07

In the first example, R shows only the first seven significant digits and
hides the rest. Note that no information is lost in any calculations even if
R hides digits; the e-notation is purely for ease of readability by the user, and
the extra digits are still stored by R, even though they aren’t shown.

Finally, note that R must impose constraints on how extreme a number
can be before it is treated as either infinity (for large numbers) or zero (for
small numbers). These constraints depend on your individual system, and
I’ll discuss the technical details a bit more in Section 6.1.1. However, any
modern desktop system can be trusted to be precise enough by default for
most computational and statistical endeavors in R.

20 Chapter 2

Exercise 2.1

a. Using R, verify that

6a + 42
34.2−3.62 = 29.50556

when a = 2.3.

b. Which of the following squares negative 4 and adds 2 to the
result?
i. (-4)^2+2

ii. -4^2+2

iii. (-4)^(2+2)

iv. -4^(2+2)

c. Using R, how would you calculate the square root of half of the
average of the numbers 25.2, 15, 16.44, 15.3, and 18.6?

d. Find loge 0.3.

e. Compute the exponential transform of your answer to (d).

f. Identify R’s representation of −0.00000000423546322 when
printing this number to the console.

2.2 Assigning Objects
So far, R has simply displayed the results of the example calculations by
printing them to the console. If you want to save the results and perform fur-
ther operations, you need to be able to assign the results of a given computa-
tion to an object in the current workspace. Put simply, this amounts to storing
some item or result under a given name so it can be accessed later, without
having to write out that calculation again. In this book, I will use the terms
assign and store interchangeably. Note that some programming books refer
to a stored object as a variable because of the ability to easily overwrite that
object and change it to something different, meaning that what it represents
can vary throughout a session. However, I’ll use the term object throughout
this book because we’ll discuss variables in Part III as a distinctly different
statistical concept.

You can specify an assignment in R in two ways: using arrow notation
(<-) and using a single equal sign (=). Both methods are shown here:

R> x <- -5

R> x

[1] -5

Numerics, Arithmetic, Assignment, and Vectors 21

R> x = x + 1 # this overwrites the previous value of x

R> x

[1] -4

R> mynumber = 45.2

R> y <- mynumber*x

R> y

[1] -180.8

R> ls()

[1] "mynumber" "x" "y"

As you can see from these examples, R will display the value assigned
to an object when you enter the name of the object into the console. When
you use the object in subsequent operations, R will substitute the value you
assigned to it. Finally, if you use the ls command (which you saw in Sec-
tion 1.3.1) to examine the contents of the current workspace, it will reveal
the names of the objects in alphabetical order (along with any other previ-
ously created items).

Although = and <- do the same thing, it is wise (for the neatness of code
if nothing else) to be consistent. Many users choose to stick with the <-, how-
ever, because of the potential for confusion in using the = (for example, I
clearly didn’t mean that x is mathematically equal to x + 1 earlier). In this
book, I’ll do the same and reserve = for setting function arguments, which
begins in Section 2.3.2. So far you’ve used only numeric values, but note that
the procedure for assignment is universal for all types and classes of objects,
which you’ll examine in the coming chapters.

Objects can be named almost anything as long as the name begins with
a letter (in other words, not a number), avoids symbols (though underscores
and periods are fine), and avoids the handful of “reserved” words such as
those used for defining special values (see Section 6.1) or for controlling
code flow (see Chapter 10). You can find a useful summary of these naming
rules in Section 9.1.2.

Exercise 2.2

a. Create an object that stores the value 32 × 41/8.

b. Overwrite your object in (a) by itself divided by 2.33. Print the
result to the console.

c. Create a new object with the value −8.2 × 10−13.

d. Print directly to the console the result of multiplying (b) by (c).

22 Chapter 2

2.3 Vectors
Often you’ll want to perform the same calculations or comparisons upon
multiple entities, for example if you’re rescaling measurements in a data set.
You could do this type of operation one entry at a time, though this is clearly
not ideal, especially if you have a large number of items. R provides a far
more efficient solution to this problem with vectors.

For the moment, to keep things simple, you’ll continue to work with
numeric entries only, though many of the utility functions discussed here
may also be applied to structures containing non-numeric values. You’ll start
looking at these other kinds of data in Chapter 4.

2.3.1 Creating a Vector
The vector is the essential building block for handling multiple items in R.
In a numeric sense, you can think of a vector as a collection of observations
or measurements concerning a single variable, for example, the heights of
50 people or the number of coffees you drink daily. More complicated data
structures may consist of several vectors. The function for creating a vector
is the single letter c, with the desired entries in parentheses separated by
commas.

R> myvec <- c(1,3,1,42)

R> myvec

[1] 1 3 1 42

Vector entries can be calculations or previously stored items (including
vectors themselves).

R> foo <- 32.1

R> myvec2 <- c(3,-3,2,3.45,1e+03,64^0.5,2+(3-1.1)/9.44,foo)

R> myvec2

[1] 3.000000 -3.000000 2.000000 3.450000 1000.000000 8.000000

[7] 2.201271 32.100000

This code created a new vector assigned to the object myvec2. Some of
the entries are defined as arithmetic expressions, and it’s the result of the
expression that’s stored in the vector. The last element, foo, is an existing
numeric object defined as 32.1.

Let’s look at another example.

R> myvec3 <- c(myvec,myvec2)

R> myvec3

[1] 1.000000 3.000000 1.000000 42.000000 3.000000 -3.000000

[7] 2.000000 3.450000 1000.000000 8.000000 2.201271 32.100000

This code creates and stores yet another vector, myvec3, which contains
the entries of myvec and myvec2 appended together in that order.

Numerics, Arithmetic, Assignment, and Vectors 23

2.3.2 Sequences, Repetition, Sorting, and Lengths
Here I’ll discuss some common and useful functions associated with R vec-
tors: seq, rep, sort, and length.

Let’s create an equally spaced sequence of increasing or decreasing
numeric values. This is something you’ll need often, for example when
programming loops (see Chapter 10) or when plotting data points (see
Chapter 7). The easiest way to create such a sequence, with numeric values
separated by intervals of 1, is to use the colon operator.

R> 3:27

[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

The example 3:27 should be read as “from 3 to 27 (by 1).” The result is
a numeric vector just as if you had listed each number manually in parenthe-
ses with c. As always, you can also provide either a previously stored value or
a (strictly parenthesized) calculation when using the colon operator:

R> foo <- 5.3

R> bar <- foo:(-47+1.5)

R> bar

[1] 5.3 4.3 3.3 2.3 1.3 0.3 -0.7 -1.7 -2.7 -3.7 -4.7

[12] -5.7 -6.7 -7.7 -8.7 -9.7 -10.7 -11.7 -12.7 -13.7 -14.7 -15.7

[23] -16.7 -17.7 -18.7 -19.7 -20.7 -21.7 -22.7 -23.7 -24.7 -25.7 -26.7

[34] -27.7 -28.7 -29.7 -30.7 -31.7 -32.7 -33.7 -34.7 -35.7 -36.7 -37.7

[45] -38.7 -39.7 -40.7 -41.7 -42.7 -43.7 -44.7

Sequences with seq
You can also use the seq command, which allows for more flexible creations
of sequences. This ready-to-use function takes in a from value, a to value, and
a by value, and it returns the corresponding sequence as a numeric vector.

R> seq(from=3,to=27,by=3)

[1] 3 6 9 12 15 18 21 24 27

This gives you a sequence with intervals of 3 rather than 1. Note that
these kinds of sequences will always start at the from number but will not
always include the to number, depending on what you are asking R to
increase (or decrease) them by. For example, if you are increasing (or
decreasing) by even numbers and your sequence ends in an odd number,
the final number won’t be included. Instead of providing a by value, how-
ever, you can specify a length.out value to produce a vector with that many
numbers, evenly spaced between the from and to values.

R> seq(from=3,to=27,length.out=40)

[1] 3.000000 3.615385 4.230769 4.846154 5.461538 6.076923 6.692308

[8] 7.307692 7.923077 8.538462 9.153846 9.769231 10.384615 11.000000

[15] 11.615385 12.230769 12.846154 13.461538 14.076923 14.692308 15.307692

24 Chapter 2

[22] 15.923077 16.538462 17.153846 17.769231 18.384615 19.000000 19.615385

[29] 20.230769 20.846154 21.461538 22.076923 22.692308 23.307692 23.923077

[36] 24.538462 25.153846 25.769231 26.384615 27.000000

By setting length.out to 40, you make the program print exactly 40 evenly
spaced numbers from 3 to 27.

For decreasing sequences, the use of by must be negative. Here’s an
example:

R> foo <- 5.3

R> myseq <- seq(from=foo,to=(-47+1.5),by=-2.4)

R> myseq

[1] 5.3 2.9 0.5 -1.9 -4.3 -6.7 -9.1 -11.5 -13.9 -16.3 -18.7 -21.1

[13] -23.5 -25.9 -28.3 -30.7 -33.1 -35.5 -37.9 -40.3 -42.7 -45.1

This code uses the previously stored object foo as the value for from and
uses the parenthesized calculation (-47+1.5) as the to value. Given those
values (that is, with foo being greater than (-47+1.5)), the sequence can
progress only in negative steps; directly above, we set by to be -2.4. The use
of length.out to create decreasing sequences, however, remains the same
(it would make no sense to specify a “negative length”). For the same from

and to values, you can create a decreasing sequence of length 5 easily, as
shown here:

R> myseq2 <- seq(from=foo,to=(-47+1.5),length.out=5)

R> myseq2

[1] 5.3 -7.4 -20.1 -32.8 -45.5

There are shorthand ways of calling these functions, which you’ll learn
about in Chapter 9, but in these early stages I’ll stick with the explicit usage.

Repetition with rep
Sequences are extremely useful, but sometimes you may want simply to
repeat a certain value. You do this using rep.

R> rep(x=1,times=4)

[1] 1 1 1 1

R> rep(x=c(3,62,8.3),times=3)

[1] 3.0 62.0 8.3 3.0 62.0 8.3 3.0 62.0 8.3

R> rep(x=c(3,62,8.3),each=2)

[1] 3.0 3.0 62.0 62.0 8.3 8.3

R> rep(x=c(3,62,8.3),times=3,each=2)

[1] 3.0 3.0 62.0 62.0 8.3 8.3 3.0 3.0 62.0 62.0 8.3 8.3 3.0 3.0 62.0

[16] 62.0 8.3 8.3

The rep function is given a single value or a vector of values as its
argument x, as well as a value for the arguments times and each. The value
for times provides the number of times to repeat x, and each provides the

Numerics, Arithmetic, Assignment, and Vectors 25

number of times to repeat each element of x. In the first line directly above,
you simply repeat a single value four times. The other examples first use
rep and times on a vector to repeat the entire vector, then use each to repeat
each member of the vector, and finally use both times and each to do both
at once.

If neither times nor each is specified, R’s default is to treat the values of
times and each as 1 so that a call of rep(x=c(3,62,8.3)) will just return the origi-
nally supplied x with no changes.

As with seq, you can include the result of rep in a vector of the same data
type, as shown in the following example:

R> foo <- 4

R> c(3,8.3,rep(x=32,times=foo),seq(from=-2,to=1,length.out=foo+1))

[1] 3.00 8.30 32.00 32.00 32.00 32.00 -2.00 -1.25 -0.50 0.25 1.00

Here, I’ve constructed a vector where the third to sixth entries (inclu-
sive) are governed by the evaluation of a rep command—the single value
32 repeated foo times (where foo is stored as 4). The last five entries are the
result of an evaluation of seq, namely a sequence from −2 to 1 of length
foo+1 (5).

Sorting with sort
Sorting a vector in increasing or decreasing order of its elements is another
simple operation that crops up in everyday tasks. The conveniently named
sort function does just that.

R> sort(x=c(2.5,-1,-10,3.44),decreasing=FALSE)

[1] -10.00 -1.00 2.50 3.44

R> sort(x=c(2.5,-1,-10,3.44),decreasing=TRUE)

[1] 3.44 2.50 -1.00 -10.00

R> foo <- seq(from=4.3,to=5.5,length.out=8)

R> foo

[1] 4.300000 4.471429 4.642857 4.814286 4.985714 5.157143 5.328571 5.500000

R> bar <- sort(x=foo,decreasing=TRUE)

R> bar

[1] 5.500000 5.328571 5.157143 4.985714 4.814286 4.642857 4.471429 4.300000

R> sort(x=c(foo,bar),decreasing=FALSE)

[1] 4.300000 4.300000 4.471429 4.471429 4.642857 4.642857 4.814286 4.814286

[9] 4.985714 4.985714 5.157143 5.157143 5.328571 5.328571 5.500000 5.500000

The sort function is pretty straightforward. You supply a vector to the
function as the argument x, and a second argument, decreasing, indicates
the order in which you want to sort. This argument takes a type of value
you have not yet met: one of the all-important logical values. A logical value

26 Chapter 2

can be only one of two specific, case-sensitive values: TRUE or FALSE. Gener-
ally speaking, logicals are used to indicate the satisfaction or failure of a
certain condition, and they form an integral part of all programming lan-
guages. You’ll investigate logical values in R in greater detail in Section 4.1.
For now, in regards to sort, you set decreasing=FALSE to sort from smallest to
largest, and decreasing=TRUE sorts from largest to smallest.

Finding a Vector Length with length
I’ll round off this section with the length function, which determines how
many entries exist in a vector given as the argument x.

R> length(x=c(3,2,8,1))

[1] 4

R> length(x=5:13)

[1] 9

R> foo <- 4

R> bar <- c(3,8.3,rep(x=32,times=foo),seq(from=-2,to=1,length.out=foo+1))

R> length(x=bar)

[1] 11

Note that if you include entries that depend on the evaluation of other
functions (in this case, calls to rep and seq), length tells you the number of
entries after those inner functions have been executed.

Exercise 2.3

a. Create and store a sequence of values from 5 to −11 that pro-
gresses in steps of 0.3.

b. Overwrite the object from (a) using the same sequence with the
order reversed.

c. Repeat the vector c(-1,3,-5,7,-9) twice, with each element
repeated 10 times, and store the result. Display the result sorted
from largest to smallest.

d. Create and store a vector that contains, in any configuration, the
following:
i. A sequence of integers from 6 to 12 (inclusive)
ii. A threefold repetition of the value 5.3
iii. The number −3
iv. A sequence of nine values starting at 102 and ending at the

number that is the total length of the vector created in (c)

e. Confirm that the length of the vector created in (d) is 20.

Numerics, Arithmetic, Assignment, and Vectors 27

2.3.3 Subsetting and Element Extraction
In all the results you have seen printed to the console screen so far, you may
have noticed a curious feature. Immediately to the left of the output there
is a square-bracketed [1]. When the output is a long vector that spans the
width of the console and wraps onto the following line, another square-
bracketed number appears to the left of the new line. These numbers rep-
resent the index of the entry directly to the right. Quite simply, the index
corresponds to the position of a value within a vector, and that’s precisely why
the first value always has a [1] next to it (even if it’s the only value and not
part of a larger vector).

These indexes allow you to retrieve specific elements from a vector,
which is known as subsetting. Suppose you have a vector called myvec in
your workspace. Then there will be exactly length(x=myvec) entries in myvec,
with each entry having a specific position: 1 or 2 or 3, all the way up to
length(x=myvec). You can access individual elements by asking R to return
the values of myvec at specific locations, done by entering the name of the
vector followed by the position in square brackets.

R> myvec <- c(5,-2.3,4,4,4,6,8,10,40221,-8)

R> length(x=myvec)

[1] 10

R> myvec[1]

[1] 5

R> foo <- myvec[2]

R> foo

[1] -2.3

R> myvec[length(x=myvec)]

[1] -8

Because length(x=myvec) results in the final index of the vector (in this
case, 10), entering this phrase in the square brackets extracts the final ele-
ment, -8. Similarly, you could extract the second-to-last element by subtract-
ing 1 from the length; let’s try that, and also assign the result to a new object:

R> myvec.len <- length(x=myvec)

R> bar <- myvec[myvec.len-1]

R> bar

[1] 40221

As these examples show, the index may be an arithmetic function of
other numbers or previously stored values. You can assign the result to a new
object in your workspace in the usual way with the <- notation. Using your
knowledge of sequences, you can use the colon notation with the length of

28 Chapter 2

the specific vector to obtain all possible indexes for extracting a particular
element in the vector:

R> 1:myvec.len

[1] 1 2 3 4 5 6 7 8 9 10

You can also delete individual elements by using negative versions of the
indexes supplied in the square brackets. Continuing with the objects myvec,
foo, bar, and myvec.len as defined earlier, consider the following operations:

R> myvec[-1]

[1] -2.3 4.0 4.0 4.0 6.0 8.0 10.0 40221.0 -8.0

This line produces the contents of myvec without the first element. Sim-
ilarly, the following code assigns to the object baz the contents of myvec with-
out its second element:

R> baz <- myvec[-2]

R> baz

[1] 5 4 4 4 6 8 10 40221 -8

Again, the index in the square brackets can be the result of an appropri-
ate calculation, like so:

R> qux <- myvec[-(myvec.len-1)]

R> qux

[1] 5.0 -2.3 4.0 4.0 4.0 6.0 8.0 10.0 -8.0

Using the square-bracket operator to extract or delete values from a
vector does not change the original vector you are subsetting unless you
explicitly overwrite the vector with the subsetted version. For instance, in
this example, qux is a new vector defined as myvec without its second-to-last
entry, but in your workspace, myvec itself remains unchanged. In other words,
subsetting vectors in this way simply returns the requested elements, which
can be assigned to a new object if you want, but doesn’t alter the original
object in the workspace.

Now, suppose you want to piece myvec back together from qux and bar.
You can call something like this:

R> c(qux[-length(x=qux)],bar,qux[length(x=qux)])

[1] 5.0 -2.3 4.0 4.0 4.0 6.0 8.0 10.0 40221.0

[10] -8.0

As you can see, this line uses c to reconstruct the vector in three parts:
qux[-length(x=qux)], the object bar defined earlier, and qux[length(x=qux)]. For
clarity, let’s examine each part in turn.

Numerics, Arithmetic, Assignment, and Vectors 29

• qux[-length(x=qux)]

This piece of code returns the values of qux except for its last element.

R> length(x=qux)

[1] 9

R> qux[-length(x=qux)]

[1] 5.0 -2.3 4.0 4.0 4.0 6.0 8.0 10.0

Now you have a vector that’s the same as the first eight entries of
myvec.

• bar

Earlier, you had stored bar as the following:

R> bar <- myvec[myvec.len-1]

R> bar

[1] 40221

This is precisely the second-to-last element of myvec that qux is missing.
So, you’ll slot this value in after qux[-length(x=qux)].

• qux[length(x=qux)]

Finally, you just need the last element of qux that matches the last ele-
ment of myvec. This is extracted from qux (not deleted as earlier) using
length.

R> qux[length(x=qux)]

[1] -8

Now it should be clear how calling these three parts of code together, in
this order, is one way to reconstruct myvec.

As with most operations in R, you are not restricted to doing things one
by one. You can also subset objects using vectors of indexes, rather than indi-
vidual indexes. Using myvec again from earlier, you get the following:

R> myvec[c(1,3,5)]

[1] 5 4 4

This returns the first, third, and fifth elements of myvec in one go.
Another common and convenient subsetting tool is the colon operator
(discussed in Section 2.3.2), which creates a sequence of indexes. Here’s
an example:

R> 1:4

[1] 1 2 3 4

R> foo <- myvec[1:4]

R> foo

[1] 5.0 -2.3 4.0 4.0

30 Chapter 2

This provides the first four elements of myvec (recall that the colon oper-
ator returns a numeric vector, so there is no need to explicitly wrap this
using c).

The order of the returned elements depends entirely upon the index
vector supplied in the square brackets. For example, using foo again, con-
sider the order of the indexes and the resulting extractions, shown here:

R> length(x=foo):2

[1] 4 3 2

R> foo[length(foo):2]

[1] 4.0 4.0 -2.3

Here you extracted elements starting at the end of the vector, working
backward. You can also use rep to repeat an index, as shown here:

R> indexes <- c(4,rep(x=2,times=3),1,1,2,3:1)

R> indexes

[1] 4 2 2 2 1 1 2 3 2 1

R> foo[indexes]

[1] 4.0 -2.3 -2.3 -2.3 5.0 5.0 -2.3 4.0 -2.3 5.0

This is now something a little more general than strictly “subsetting”—
by using an index vector, you can create an entirely new vector of any length
consisting of some or all of the elements in the original vector. As shown
earlier, this index vector can contain the desired element positions in any
order and can repeat indexes.

You can also return the elements of a vector after deleting more than
one element. For example, to create a vector after removing the first and
third elements of foo, you can execute the following:

R> foo[-c(1,3)]

[1] -2.3 4.0

Note that it is not possible to mix positive and negative indexes in a
single index vector.

Sometimes you’ll need to overwrite certain elements in an existing vec-
tor with new values. In this situation, you first specify the elements you want
to overwrite using square brackets and then use the assignment operator to
assign the new values. Here’s an example:

R> bar <- c(3,2,4,4,1,2,4,1,0,0,5)

R> bar

[1] 3 2 4 4 1 2 4 1 0 0 5

R> bar[1] <- 6

R> bar

[1] 6 2 4 4 1 2 4 1 0 0 5

Numerics, Arithmetic, Assignment, and Vectors 31

This overwrites the first element of bar, which was originally 3, with a
new value, 6. When selecting multiple elements, you can specify a single
value to replace them all or enter a vector of values that’s equal in length
to the number of elements selected to replace them one for one. Let’s try
this with the same bar vector from earlier.

R> bar[c(2,4,6)] <- c(-2,-0.5,-1)

R> bar

[1] 6.0 -2.0 4.0 -0.5 1.0 -1.0 4.0 1.0 0.0 0.0 5.0

Here you overwrite the second, fourth, and sixth elements with -2, -0.5,
and -1, respectively; all else remains the same. By contrast, the following
code overwrites elements 7 to 10 (inclusive), replacing them all with 100:

R> bar[7:10] <- 100

R> bar

[1] 6.0 -2.0 4.0 -0.5 1.0 -1.0 100.0 100.0 100.0 100.0 5.0

Finally, it’s important to mention that this section has focused on just
one of the two main methods, or “flavors,” of vector element extraction in R.
You’ll look at the alternative method, using logical flags, in Section 4.1.5.

Exercise 2.4

a. Create and store a vector that contains the following, in this
order:
– A sequence of length 5 from 3 to 6 (inclusive)
– A twofold repetition of the vector c(2,-5.1,-33)

– The value 7
42 + 2

b. Extract the first and last elements of your vector from (a), storing
them as a new object.

c. Store as a third object the values returned by omitting the first
and last values of your vector from (a).

d. Use only (b) and (c) to reconstruct (a).

e. Overwrite (a) with the same values sorted from smallest to
largest.

f. Use the colon operator as an index vector to reverse the order
of (e), and confirm this is identical to using sort on (e) with
decreasing=TRUE.

g. Create a vector from (c) that repeats the third element of (c)
three times, the sixth element four times, and the last ele-
ment once.

32 Chapter 2

h. Create a new vector as a copy of (e) by assigning (e) as is to a
newly named object. Using this new copy of (e), overwrite the
first, the fifth to the seventh (inclusive), and the last element with
the values 99 to 95 (inclusive), respectively.

2.3.4 Vector-Oriented Behavior
Vectors are so useful because they allow R to carry out operations on
multiple elements simultaneously with speed and efficiency. This vector-
oriented, vectorized, or element-wise behavior is a key feature of the language,
one that you will briefly examine here through some examples of rescaling
measurements.

Let’s start with this simple example:

R> foo <- 5.5:0.5

R> foo

[1] 5.5 4.5 3.5 2.5 1.5 0.5

R> foo-c(2,4,6,8,10,12)

[1] 3.5 0.5 -2.5 -5.5 -8.5 -11.5

This code creates a sequence of six values between 5.5 and 0.5, in incre-
ments of 1. From this vector, you subtract another vector containing 2, 4,
6, 8, 10, and 12. What does this do? Well, quite simply, R matches up the
elements according to their respective positions and performs the operation
on each corresponding pair of elements. The resulting vector is obtained by
subtracting the first element of c(2,4,6,8,10,12) from the first element of foo
(5.5 − 2 = 3.5), then by subtracting the second element of c(2,4,6,8,10,12)
from the second element of foo (4.5 − 4 = 0.5), and so on. Thus, rather than
inelegantly cycling through each element in turn (as you could do by hand
or by explicitly using a loop), R permits a fast and efficient alternative using
vector-oriented behavior. Figure 2-1 illustrates how you can understand this
type of calculation and highlights the fact that the positions of the elements
are crucial in terms of the final result; elements in differing positions have
no effect on one another.

The situation is made more complicated when using vectors of different
lengths, which can happen in two distinct ways. The first is when the length
of the longer vector can be evenly divided by the length of the shorter vec-
tor. The second is when the length of the longer vector cannot be divided by
the length of the shorter vector—this is usually unintentional on the user’s
part. In both of these situations, R essentially attempts to replicate, or recycle,
the shorter vector by as many times as needed to match the length of the
longer vector, before completing the specified operation. As an example,
suppose you wanted to alternate the entries of foo shown earlier as negative

Numerics, Arithmetic, Assignment, and Vectors 33

Vector A Vector BOperation/Comparison

[1] [1]

[2] [2]

[n] [n]

... ...

Figure 2-1: A conceptual diagram of the element-wise behavior of a
comparison or operation carried out on two vectors of equal length
in R. Note that the operation is performed by matching up the element
positions.

and positive. You could explicitly multiply foo by c(1,-1,1,-1,1,-1), but you
don’t need to write out the full latter vector. Instead, you can write the
following:

R> bar <- c(1,-1)

R> foo*bar

[1] 5.5 -4.5 3.5 -2.5 1.5 -0.5

Here bar has been applied repeatedly throughout the length of foo until
completion. The left plot of Figure 2-2 illustrates this particular example.
Now let’s see what happens when the vector lengths are not evenly divisible.

R> baz <- c(1,-1,0.5,-0.5)

R> foo*baz

[1] 5.50 -4.50 1.75 -1.25 1.50 -0.50

Warning message:

In foo * baz :

longer object length is not a multiple of shorter object length

Here you see that R has matched the first four elements of foo with the
entirety of baz, but it’s not able to fully repeat the vector again. The repeti-
tion has been attempted, with the first two elements of baz being matched
with the last two of the longer foo, though not without a protest from R,
which notifies the user of the unevenly divisible lengths (you’ll look at warn-
ings in more detail in Section 12.1). The plot on the right in Figure 2-2 illus-
trates this example.

34 Chapter 2

bar*

[1] [1]

[6] [2]

foo baz*

[1] [1]

[2] [2]

[6] [2]

foo

[3] [1] [3] [3]

[4] [2]

[5] [1] [5] [1]

[2] [2]

[4] [4]

Figure 2-2: An element-wise operation on two vectors of differing lengths.
Left: foo multiplied by bar; lengths are evenly divisible. Right: foo multiplied
by baz; lengths are not evenly divisible, and a warning is issued.

As I noted in Section 2.3.3, you can consider single values to be vectors
of length 1, so you can use a single value to repeat an operation on all the
values of a vector of any length. Here’s an example, using the same vec-
tor foo:

R> qux <- 3

R> foo+qux

[1] 8.5 7.5 6.5 5.5 4.5 3.5

This is far easier than executing foo+c(3,3,3,3,3,3) or the more general
foo+rep(x=3,times=length(x=foo)). Operating on vectors using a single value in
this fashion is quite common, such as if you want to rescale or translate a set
of measurements by some constant amount.

Another benefit of vector-oriented behavior is that you can use vector-
ized functions to complete potentially laborious tasks. For example, if you
want to sum or multiply all the entries in a numeric vector, you can just use
a built-in function.

Numerics, Arithmetic, Assignment, and Vectors 35

Recall foo, shown earlier:

R> foo

[1] 5.5 4.5 3.5 2.5 1.5 0.5

You can find the sum of these six elements with

R> sum(foo)

[1] 18

and their product with

R> prod(foo)

[1] 162.4219

Far from being just convenient, vectorized functions are faster and more
efficient than an explicitly coded iterative approach like a loop. The main
takeaway from these examples is that much of R’s functionality is designed
specifically for certain data structures, ensuring neatness of code as well as
optimization of performance.

Lastly, as mentioned earlier, this vector-oriented behavior applies in the
same way to overwriting multiple elements. Again using foo, examine the
following:

R> foo

[1] 5.5 4.5 3.5 2.5 1.5 0.5

R> foo[c(1,3,5,6)] <- c(-99,99)

R> foo

[1] -99.0 4.5 99.0 2.5 -99.0 99.0

You see four specific elements being overwritten by a vector of length 2,
which is recycled in the same fashion you’re familiar with. Again, the length
of the vector of replacements must evenly divide the number of elements
being overwritten, or else a warning similar to the one shown earlier will be
issued when R cannot complete a full-length recycle.

Exercise 2.5

a. Convert the vector c(2,0.5,1,2,0.5,1,2,0.5,1) to a vector of only
1s, using a vector of length 3.

b. The conversion from a temperature measurement in degrees
Fahrenheit F to Celsius C is performed using the following
equation:

C =
5
9

(F − 32)

36 Chapter 2

Use vector-oriented behavior in R to convert the tempera-
tures 45, 77, 20, 19, 101, 120, and 212 in degrees Fahrenheit to
degrees Celsius.

c. Use the vector c(2,4,6) and the vector c(1,2) in conjunction with
rep and * to produce the vector c(2,4,6,4,8,12).

d. Overwrite the middle four elements of the resulting vector from
(c) with the two recycled values -0.1 and -100, in that order.

Important Code in This Chapter

Function/operator Brief description First occurrence

+, *, -, /, ^ Arithmetic Section 2.1, p. 17
sqrt Square root Section 2.1.1, p. 18
log Logarithm Section 2.1.2, p. 19
exp Exponential Section 2.1.2, p. 19
<-, = Object assignment Section 2.2, p. 21
c Vector creation Section 2.3.1, p. 23
:, seq Sequence creation Section 2.3.2, p. 24
rep Value/vector repetition Section 2.3.2, p. 25
sort Vector sorting Section 2.3.2, p. 26
length Determine vector length Section 2.3.2, p. 27
[] Vector subsetting/extraction Section 2.3.3, p. 28
sum Sum all vector elements Section 2.3.4, p. 36
prod Multiply all vector elements Section 2.3.4, p. 36

Numerics, Arithmetic, Assignment, and Vectors 37

