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2  Appendix A

 ?  Problem Sets 

Problem Set 1

Let’s start off with the 2×2 matrix 4
5

−1
−2

.  Use it in the following six problems.

1.	 Calculate the determinant.

2.	 Use the formula =
a11

a21

a12

a22

a22

−a21

−a12

a11

−1
1

a11 a22−a12 a21  
to calculate the 

inverse.

3.	 Find the inverse using Gaussian elimination.

4.	 Find all eigenvalues and eigenvectors.

5.	 Express the matrix in the form 
x11

x21

x12

x22

x11

x21

x12

x22

λ1

0
0
λ2

−1

6.	 Solve the linear system of equations 
4x1−1x2 = 1

5x1−2x2 = −1
 using Cramer’s rule.

Problem set 2

Next up is the 3×3 matrix 

1

2

3

4

1

−2

−1

2

−1
. Use it in the following two problems.

1.	 Prove that the matrix column vectors 

1

2

3
, 

4

1

−2
, and 

−1

2

−1
 are linearly  

independent (i.e., that the matrix  
rank is equal to three).

2.	 Calculate the determinant.



Workbook  3

Problem set 3

Determine whether the following sets are subspaces of R3.

1.	  
α and β are arbitrary 
real numbers

α
β

5α−7β

2.	  
α
β

5α−7

α and β are arbitrary 
real numbers

Note	 Have a look at Appendixes C and D before trying problem set 4.

Problem Set 4

Let’s deal with the vectors 

1

2

3
 and  

4

1

−2
 for the next set of problems.

1.	 Calculate the distance to the origin for both vectors.

2.	 Calculate the scalar product of the two vectors.

3.	 Calculate the angle between the two vectors.

4.	 Calculate the cross product of the two vectors.
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 !  Solutions 

Problem Set 1

1.	  
4

5

−1

−2
= 4 · (−2) − (−1) · 5 = −8 + 5 = −3det

2.	  
1

4 · (−2) − (−1) · 5

1

−3

1

4

−2

−5

1

4

−2

−5
=

1

3
=

2

5

−1

−4

3.	 Here is the solution:

4

5

−1

−2

1

0

0

1

3

5

0

−2

2

0

−1

1

15

0

0

−6

10

−10

−5

8

Multiply row 1 by 2 and subtract row 2 from row 1.

Multiply row 1 by 5 and row 2 by 3. Subtract row 1 from row 2.

Divide row 1 by 15 and row 2 by −6.

0

1

1

0

1

3
−

4

3
−

2

3

5

3

4.	 The eigenvalues are roots of the characteristic equation 

4 − λ
5 

−1

−2 − λ 
det = 0
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and are as follows:

4 − λ
5 

−1

−2 − λ
= (4 − λ) · (−2 − λ) − (−1) · 5

= (λ − 4)(λ + 2) + 5

= λ2 − 2λ − 3

= (λ − 3)(λ + 1) = 0

det

λ = 3, −1

a.	 Eigenvectors corresponding to λ = 3

Plugging our value into 
x1

x2

x1

x2

= λ
4

5

−1

−2
, 

that is 
0

0

x1

x2

=
4 − λ

5 

−1

−2 − λ ,

gives us 
1

5

−1

−5

1

5

0

0

4 − 3

5

−1

−2 − 3

x1

x2

x1

x2

x1

5x1

−x2

−5x2

= = == [x1 − x2] .

We see that x1 = x2, which leads us to the eigenvector 

x1

x2

c1

c1

1

1
= = c1

where c1 is a real nonzero number.

b.	 Eigenvectors corresponding to λ = −1

Plugging −1 into the matrix gives us this:

5

5

−1

−1

1

1

0

0

4 − (−1)

5

−1

−2 − (−1)

x1

x2

x1

x2

5x1

5x1

−x2

−x2

= = == [5x1 − x2]

We see that 5x1 = x2, which leads us to the eigenvector

x1

x2

c2

5c2

1

5
= = c2

where c2 is a real nonzero number.
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5.	 From problem 4:

=
4

5

−1

−2

3

0

0

−1

1

1

1

5

1

1

1

5

−1

6.	 The linear system of equations 
4x1 − 1x2 = 1

5x1 − 2x2 = −1  can be rewritten as follows:

=
1

−1

x1

x2

4

5

−1

−2

Using the methods from problem 1, we are easily able to infer the roots 
using Cramer’s rule.

•	  x1 = = = = 1 
4

5

−1

−2
det

1

−1

−1

−2
det

1 · (−2) − (−1) · (−1)

−3

−3

−3

•	  x2 = = = = 3 
4

5

−1

−2
det

4

5

1

−1
det

4 · (−1) − 1 · 5

−3

−9

−3
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Problem Set 2

1.	 It looks like the rank of the matrix

1

2

3

4

1

−2

−1

2

−1

is 3 from inspection, but let’s use the following table, just to be sure.

Add (−2 times row 1) to row 2 and (−3 times row 1) to row 3.

Add (−2 times row 2) to row 3.

1

−2

−3

0

1

0

0

0

1

1

2

3

4

1

−2

−1

2

−1

1

0

0

4

−7

−14

−1

4

2

=

Add (           times row 3) to row 1 and (     times row 3) to row 2.
1

6
−

4

6

1

0

0

0

1

−2

0

0

1

1

0

0

4

−7

0

−1

4

−6

1

0

0

4

−7

−14

−1

4

2

=

Add (     times row 2) to row 1.

1

0

0

4

−7

0

−1

4

−6

1

0

0

4

−7

0

0

0

−6

=

0

1

0

1

0

0

1

6
−

4

6

1

1

2

3

4

1

−2

−1

2

−1

4

7

1

0

0

4

−7

0

0

0

−6

1

0

0

0

−7

0

0

0

−6

=

4
71

0

0

0

0

1

1

0
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The two matrices 

1

2

3

4

1

−2

−1

2

−1

 and 

1

0

0

0

−7

0

0

0

−6

 have the same rank, as 

we saw on pages 196–201.

Since the number of linearly independent vectors among 

1

0

0

, 

0

−7

0

, and 

0

0

−6

 
is obviously 3, 

the rank of both 

1

2

3

4

1

−2

−1

2

−1

 and 

1

0

0

0

−7

0

0

0

−6

 also must be 3.

Note that the solution is apparent in step three of the table, since triangu-
lar n×n matrices with nonzero main diagonal entries have rank n. This is also 
true for nonsquare matrices.

2.	  

= 1 · 1 · (−1) + 4 · 2 · 3 + (−1) · 2 · (−2) − (−1) · 1 · 3 − 4 · 2 · (−1) − 1 · 2 · (−2)

= −1 + 24 + 4 + 3 + 8 + 4 = 42

det

1

2

3

4

1

−2

−1

2

−1
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Problem Set 3

Suppose c is an arbitrary real number.

1.	 The set is a subspace since both conditions are met.





α
β

5α − 7β

α1

β1

5α1 − 7β1

α2

β2

5α2 − 7β2

α1 + α2

β1 + β2

5(α1 + α2) − 7(β1 + β2)

+ = ∈
α and β are 
arbitrary 
real numbers

α
β

5α − 7β

α1

β1

5α1 − 7β1

c

cα1

cβ1

5(cα1) − 7(cβ1)

= ∈
α and β are 
arbitrary 
real numbers

2.	 The set is not a subspace since neither condition is met.1



α
β

5α − 7

α1

β1

5α1 − 7
2

2α1

2β1

5(2α1) − 14

2α1

2β1

5(2α1) − 7
= ≠ ∈

α1

β1

5α1 − 7

α2

β2

5α2 − 7
+

≠

α
β

5α−7

α1 + α2

β1 + β2

5(α1 + α2) − 14

α1 + α2

β1 + β2

5(α1 + α2) − 7
= ∈

α and β are 

arbitrary 

real numbers

α and β are 

arbitrary 

real numbers



1. Both conditions on page 151 have to be met for the subset to be a subspace. This means that 
checking the second condition is unnecessary if we find that the first condition doesn’t hold.



10 A ppendix A

Problem Set 4

1.	  

1

2

3

= 12 + 22 + 32 = =1 + 4 + 9 14

4

1

−2

= 42 + 12 + (−2)2 = =16 + 1 + 4 21

2.	   ·         = 1 · 4 + 2 · 1 + 3 · (−2) = 4 + 2 − 6 = 0

1

2

3

4

1

−2

3.	 The angle between 

1

2

3

 and 

4

1

−2

 can be calculated using the dot product for-
mula as follows:

cos θ = = = 0

·

1

2

3

4

1

−2

1

2

3

4

1

−2

·

14 21·

0

So the angle is cos−1 0 = 90 degrees.

4.	  

1

2

3

2 · (−2)

3 · 4

1 · 1

4

1

−2

−1

2

−1

−7

14

−7

(−4) − 3

12 + 2

1 − 8

= = = = 7×

−

−

−

1 · 3

(−2) · 1

4 · 2
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On page 16 (Chapter 1) it was mentioned that linear algebra is generally about 
translating something residing in an m-dimensional space into a corresponding 
shape in an n-dimensional space. This is by all means true, though understand-
ing a more general interpretation of linear algebra might give you an edge if you 
decide to study the subject further.

In this interpretation, most of the interesting calculations and theorems have 
to do with something called vector spaces, which are described on the next page. 
Note that there is a difference between these vectors and the ones presented in 
Chapter 4—the ones we’re discussing here are a much more abstract concept.

The basic idea is this: Much as you play football on football fields and golf on 
golf courses, you calculate linear algebra in vector spaces.

 But before we get into the technical definition of a vector space, let’s look at a 
couple of simple, concrete examples.

Example 1

The first example may already be familiar: Let’s say that X is the set of all ordered 
triples of real numbers. So two of the many elements in X are (1.0, 2.3, −4.6) 
and (0.0, −5.7, 8.1). This infinite set of ordered triples forms a vector space (as 
described by the axioms listed on the next page). X is a vector space, and (1.0, 2.3, 
−4.6) is a vector.

Example 2

As a second example, consider these two polynomials with real coefficients:

7t4 − 3t − 4 and 2t − 1

These polynomials could be considered vectors, if we view the set of all poly-
nomials up to the fourth degree as a vector space.
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The Eight Axioms of Vector Spaces

Assume that x, y, and z are elements of the set X, and that c and d are two 
arbitrary numbers.

If X satisfies the following two sets of axioms, we say that X is a vector 
space and x, y, and z are vectors.

Addition Axioms:
The set has to be closed under vector addition. This means that the sum of 
two elements of the set also belongs to the set.

Vector addition must also satisfy the following four conditions:

1.	 (x + y) + z = x + (y + z)  (associativity)

2.	 x + y = y + x  (commutativity)

3.	 A zero vector (0) exists with the following properties: 
x + 0 = 0 + x = x

4.	 An inverse vector (−x) exists with the following properties: 
x + (−x) = (−x) + x = 0

Scalar Multiplication Axioms:
The set has to be closed under scalar multiplication. This means that the 
product of an element of the set and an arbitrary number also belongs to 
the set.

Scalar multiplication must also satisfy the following four conditions:

5.	 c(x + y) = cx + cy

6.	 (cd)x = c(dx)

7.	 (c + d)x = cx + dx

8.	 1x = x

In this book we always assume that scalar multiplication is done with 
real numbers. Such vector spaces are usually called real vector spaces. Vector 
spaces also allowing multiplication with complex numbers would similarly be 
called complex vector spaces.
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Norm

Suppose we have an arbitrary vector in Rn  

x1

x2

xn  

.

The vector norm or length is then equal to 
 x1

2 + x2
2 + ... + xn

2

and is written 

x1

x2

xn

.

Example 1

1

3
= 12 + (  3 )2 = =1 + 3 4 = 2

2  −   6

2  +   6
= (  2 −  6)2 + (  2 +  6)2 = 16 = 4= 2 − 2  12 + 6 + 2 + 2  12 + 6

Example 2

1

3
= 12 + (  3 )2 = =1 + 3 4 = 2

2  −   6

2  +   6
= (  2 −  6)2 + (  2 +  6)2 = 16 = 4= 2 − 2  12 + 6 + 2 + 2  12 + 6
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Dot Product

Suppose we have two arbitrary vectors 

x1

x2

xn

 and 

y1

y2

yn

 in Rn.

The vector’s dot product1 is defined as follows:

x1y1 + x2 y2 + ... + xn yn

This is usually represented with a dot ( ∙ ) like so:

x1

x2

xn

x1

x2

xn

·

Example

1

3

2  −   6

2  +   6
· = 1 · (  2 −  6) +  3 · (  2 +  6) =  2 −  6 +  6 +  18 =  2 + 3  2 = 4  2

1. The dot product is sometimes referred to as the scalar product.
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The Angle Between Two Vectors

Suppose we have two arbitrary vectors 

x1

x2

xn

 and 

y1

y2

yn

 in  Rn.

The angle θ between those two vectors can be found using the following 
relationship: 

x1

x2

xn

y1

y2

yn

· =

x1

x2

xn

y1

y2

yn

· · cos θ

Example

The angle θ between the two vectors 
1

3  and 
2  −   6

2  +   6  can be found using the 
formula:

1

3

2  −   6

2  +   6
·

2  −   6

2  +   6

1

3
·

cos θ = =
4  2

2 · 4 2

2
=

So θ = 45 degrees.

2  −   6

2  +   6

3

θ

O 1
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Inner Products

The dot product is actually a special case of a more general concept that has 
some very interesting applications. That general concept is a function, called an 
inner product, that maps two vectors to a real number and also satisfies some 
special properties. There are also inner product spaces,2 which are vector spaces 
that have an associated inner product, as described below.

Real Inner Product Spaces

We say that the real vector space X is a real inner product space or Euclidean 
space if there exists a real inner product <x, y> which maps a pair of vectors 
to a scalar and satisfies the following conditions for all vectors x, y, z, and all 
scalars c:

  <x, y> = <y, x>

  <cx, y> = c<x, y> = <x, cy>

  <x, y + z> = <x, y> + <x, z> and <x + y, z> = <x, z> + <y, z>

  <x, x> ≥ 0 and <x, x> = 0 only when x = 0 (the zero vector).

The dot product is the most familiar example of an inner product. In that 
example, we define

<x, y> = x1y1 + x2y2 + ... + xnyn

2. The subject is outside the scope of this book, but inner products also appear in complex product 
spaces.
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Orthonormal Bases

Vector sets like

1

0

0

1
,

1

2

1

1
,

1

2

−1

1
  and  

1

2

3

4

1

−2

−1

2

−1

1

14

1

21

1

6
, ,  

where

•	 the norm of every vector is equal to 1

•	 the dot product of each vector pair is equal to 0

are called orthonormal bases or ON-bases.
The Gram-Schmidt orthogonalization process can be used to create an ortho-

normal basis from any arbitrary basis, but it is outside the scope of this book.
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What Is the Cross Product?

Suppose we have two arbitrary vectors 

a

b

c

 and 

P

Q

R

 in R3.

The vector cross product is defined as  

bR − Qc

cP − Ra

aQ − Pb

and is usually represented with a cross  like so: 

P

Q

R

a

b

c


Note	 The cross product is defined only in R3. In contrast, the dot product is 

defined in Rn for all positive n.

Here’s a good mnemonic for remembering the combinations in calculating the 
cross product of two vectors:

P

Q

R

a

b

c

P

Q

R

a

b

c

Start by writing the elements of each vector twice, as you can see above. 
Ignoring the first and last rows, draw an arrow from each element to the one 
below it in the opposite vector.

Arrows going from left to right get a plus sign; arrows going from right to left 
get a minus sign. The top pair of arrows produces the first component of the cross 
product, the middle pair produces the second component, and the bottom pair 
produces the last component.
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Cross Product and Parallelograms

Consider the following cross product:


P

Q

R

a

b

c

u  It is perpendicular to both vectors 

P

Q

R

 and  

a

b

c

.

v  Its length is equal to the area of the parallelogram with sides 

P

Q

R

 and  

a

b

c

.

Both properties are illustrated in the picture below.

a

b

c

P

Q

R

O


P

Q

R

a

b

c

Note	 This picture is using a “right handed” coordinate system. That means that 

your right thumb will point in the direction of the cross product if you do the fol-

lowing: Stick your thumb out so it is perpendicular to your lower arm, then use 

your remaining four fingers to form the letter C. Starting with the base of your 

fingers as the vector on the left side of the cross product, orient your hand so 

the tips of your fingers are pointing toward the vector on the right side of the 

cross product. Your thumb will then be pointing in the direction of the result of 

the cross product! Note that if you switch the positions of the vectors, the cross 

product will reverse direction.
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Let’s make sure that both  and  hold.

a

b

c

a

b

c

P

Q

R

a

b

c

bR − Qc

cP − Ra

aQ − Pb
 =· ·

= a(bR − Qc) + b(cP − Ra) + c(aQ − Pb)

= abR − aQc + bcP − bRa + caQ − cPb

= 0

a

b

c

P

Q

R

bR − Qc

cP − Ra

aQ − Pb
 =· ·

P

Q

R

P

Q

R

= P(bR − Qc) + Q(cP − Ra) + R(aQ − Pb)

= PbR − PQc + QcP − QRa + RaQ − RPb

= 0

a

b

c

P

Q

R


2

=

bR − Qc

cP − Ra

aQ − Pb

2

= (bR − Qc)2 + (cP − Ra)2 + (aQ − Pb)2

= (a2 + b2 + c2)(P2 + Q2 + R2) −

a

b

c

P

Q

R

·

2

= (a2 + b2 + c2)(P2 + Q2 + R2) − (a2 + b2 + c2)(P2 + Q2 + R2) cos2θ

= (a2 + b2 + c2)(P2 + Q2 + R2)(1 − cos2θ)

= (a2 + b2 + c2)(P2 + Q2 + R2) sin2θ

= (a2 + b2 + c2)(P2 + Q2 + R2) − (aP + bQ + cR)2

a

b

c

P

Q

R
sin θ

2

=

θ is the angle between        and 

P

Q

R

a

b

c




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Cross Product and Dot Product

The table below contains a comparison between cross and dot products.

Cro� Product Dot Product

1

2

3

4

5

6

 =

2 · 6 − 5 · 3

3 · 4 − 6 · 1

1 · 5 − 4 · 2

= −

5 · 3 − 2 · 6

6 · 1 − 3 · 4

4 · 2 − 1 · 5

= −

4

5

6


1

2

3

1

2

3

4

5

6

· = 1 · 4 + 2 · 5 + 3 · 6

= 4 · 1 + 5 · 2 + 6 · 3 =

1

2

3

4

5

6

·

1c

2c

3c

4

5

6

 =

2c · 6 − 5 · 3c

3c · 4 − 6 · 1c

1c · 5 − 4 · 2c

= c

2 · 6 − 5 · 3

3 · 4 − 6 · 1

1 · 5 − 4 · 2

= c

1

2

3

4

5

6



1c

2c

3c

4

5

6

· = 1c · 4 + 2c · 5 + 3c · 6

= c (1 · 4 + 2 · 5 + 3 · 6) = c

1

2

3

4

5

6

·

1

2

3



4

5

6

7

8

9

+

=

1

2

3



4 + 7

5 + 8

6 + 9

=

2 · (6 + 9) − (5 + 8) · 3

3 · (4 + 7) − (6 + 9) · 1

1 · (5 + 8) − (4 + 7) · 2

=

2 · 6 − 5 · 3

3 · 4 − 6 · 1

1 · 5 − 4 · 2

+

2 · 9 − 8 · 3

3 · 7 − 9 · 1

1 · 8 − 7 · 2

= + 

1

2

3

4

5

6

1

2

3

7

8

9

1

2

3

4

5

6

7

8

9

+

=

1

2

3

4 + 7

5 + 8

6 + 9

·

·

= 1 · (4 + 7) + 2 · (5 + 8) + 3 · (6 + 9)

= (1 · 4 + 2 · 5 + 3 · 6) + (1 · 7 + 2 · 8 + 3 · 9)

= +

1

2

3

4

5

6

1

2

3

7

8

9

· ·
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28 A ppendix E

Determinants have several interesting properties. We’ll look at seven of them in 
this appendix.

Property 1

For any square matrix A, det A = det AT.

a11

an1

a1n

ann

a11

an1

a1n

ann

det = det

T

Example

•	  
3

0

0

2
det = 6

O

2

3

•	  
3

0

0

2
det = 6

3

0

0

2
= det

T

O

2

3
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Property 2

If two columns or two rows of A are interchanged, resulting in matrix B, then 
det B = −det A.

a11

an1

a1i

ani

det = (−1)det

a1j

anj

a1n

ann

a11

an1

a1n

ann

a1i

ani

a1j

anj

Example

•	  
3

0

0

2
det = 6

O

2

3

•	  (−1)det = (−1) · (−6) = 6
3

0

0

2

O

2

3
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Property 3

If A has two identical columns or two identical rows, then det A = 0.

a11

an1

b1

bn

det = 0

b1

bn

a1n

ann

column i column j

Example

•	  
3

0

3

0
det = 0

O 3

The area is equal to zero.
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Property 4

If a column or row of A is multiplied by the constant c, resulting in matrix B, then 
det B = c det A, or equivalently, det A = ¹⁄c det B.

a11

an1

a1i · c

ani · c
det = c det

a1n

ann

a11

an1

a1n

ann

a1i

ani

Example

•	  
3

0

0

2
det = 6

O

2

3

•	  
3 · 2

0 · 2

0

2
det = det

6

0

0

2
= 2 · 6 = 2 det 

3

0

0

2

O

2

6
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Property 5

Let A and B be identical square matrices except that the ith columns (or ith rows) 
differ. Let C be a matrix that is identical to A and B except that the ith column 
(or ith row) of C is the sum of the ith columns (or ith rows) of A and B. Then  
det C = det A + det B.

det

a11

an1

a1n

ann

a1i

ani

+ det

a11

an1

a1n

ann

b1i

bni

= det

a11

an1

a1i + b1i

ani + bni

a1n

ann

Example

•	   
3

0

0

2
det = 6

O

2

3

•	  det 
2

2

0

2
+ det

1

−2

0

2

2 + 1

2 − 2

0

2
= det

3

0

0

2
= det = 6

O

2

2 O

2

1

−2
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Property 6

Let B be the matrix formed by replacing column j (or row j) of A with the sum 
of column j (or row j) of A and a nonzero multiple, c, of column i (or row i) of A, 
where i ≠ j. Then det B = det A. 

det = det

a11

an1

a1i

ani

a1j

anj

a1n

ann

a11

an1

a1i

ani

a1j + (a1i · c)

anj + (ani · c)

a1n

ann

Example

•	   
3

0

0

2
det = 6

O

2

3

•	  
3

0

3

2
= 6

3

0

0 + (3 · 1)

2 + (0 · 1)
det = det

O

2

3 6
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Property 7

Let A and B be any two square matrices. Then (det A)(det B) = det (AB).

a11

an1

a1n

ann

b11

bn1

b1n

bnn

det det

a11

an1

a1n

ann

b11

bn1

b1n

bnn

= det

Example

•	  
3

0

0

2
det · det

0

0
1
3

1
2

= 6 ·
1
6

= 1

O

2

3 1
3

1
2

O

•	  
3

0

0

2
det

0

0
1
3

1
2

= det
1

0

0

1
= 1

O

1

1
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