
2

Digital Operations

And

Or
Not

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Okay!
Today is
my treat!

But that also means
you have to teach me

about CPUS!

Wow... you’re
pre$y pushy...

Why do I have to m%t
with you on my way back
from sch&l anyway?

On your way back
from sch&l...?!

Does that mean you’re
not a shut-in anymore?

So you’re an ex-
hikikomori now??

Could you
please set your
crazy-switch to
o4 for once?!

I am a bit
hungry

though...

The Computer's World Is Binary

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Ayumi

37

The Reciprocal States of 1 and 0

Okay, let me start
o' with a question!

Last time you said that,
“computers live in a world
of 1S and 0S,” but that was

a* pre$y abstract.

But what do you
mean by 1S and 0S

anyway?

H+. A g&d question a* of
a su/en. You can think of

1S and 0S as two reciprocal
states that are o2osites.

They’re more
like signals than
numbers rea*y.

Two reciprocal
states...

You mean like
“light and dark,”

“life and death,” or
“on and o'?”

Precisely!

To put it another way, the
voltages in computer circuits
genera*y fa* into two bands.

High voltages are close to
the su2ly voltage, and low

voltages are close to ground,
at zero volts.

Time

Voltage changes with time

Low

High

Voltage*

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

38 Chapter 2 Digital Operations

I s%!
If it’s just two

voltages, it’s a*
pre$y clear then.

The voltage is
either low or high.
It’s rea*y simple!

Yeah.

A* computers use these
two values (zero and one,

or low and high*) when
performing operations.

Decimal and Binary

* In this b&k, we’* treat low as zero and high as one,
but it’s po:ible to do it the other way around as we*.
It’s up to the system designer which a:ignment to use.

H+... but what can you
rea*y do with just

1S and 0S?

Wouldn’t you
only be able to
do very simple

calculations with
just those two

numbers?

Hehehe! Na;ow-minded,
f&lish human!

Computers and humans
think in di'erent ways!

Humans use the decimal
number system which
uses the ten digits

from 0 to 9.

But computers expre: a*
numbers in binary using

only 1S and 0S.

Binary
(or base 2)

Decimal
(or base 10)

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Decimal Binary

Comparing decimal
and binary

As you can s%,
you don’t n%d more

than 1S and 0S!!

Wow, It rea*y is
only 1S and 0S! But

the number of digits
increases rea*y fast

in binary...

By the way, a binary digit
(a one or a zero) is also
ca*ed a bit in computer

terminology. That’s
rea*y important, so

don’t forget it!

Four digits,
so four bits

A four-digit binary
number is four bits... So,
to expre: the decimal

number 9, we would n%d
four bits (1001), right?

Come now, are you
prepared to dive

into the world of
1S and 0S?!

swish

Ah, sure!

I wonder if
he’s always
this hyper...

Another
digit!

Another
digit!

Another
digit!

Another
digit!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

40 Chapter 2 Digital Operations

Expressing Numbers in Binary

Well then, let’s learn the basics of binary, or base 2, math! Let’s start by thinking about the

decimal, or base 10, system that we use every day.

Hundreds Tens Ones

For example, the number 356 is divided up as in the illustration above. Each digit is

multiplied by successive powers of ten to get the final value.

Okay! It’s really easy if I just think of it like different coin denominations: 356 yen is just

three 100-yen coins (102), five 10-yen coins (101), and six 1-yen coins (100) added together.

That’s right. The next step is to apply that same logic to binary. We just swap the 10 in our

decimal calculations for a 2 in the binary case to get the appropriate factors for each digit.

Take a look at this picture.

Any number to the power of zero is equal to one. For example, 100 = 1, and 20 = 1.

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

The Computer's World Is Binary 41

Uh-huh! I don’t think anyone uses coins like this though... but if someone did, I would just

take either 1 or 0 of each of the 8 yen, 4 yen, 2 yen, and 1 yen coins, right?

Sooo, it’s the same reasoning with binary, right? That means that it would be (2-1, 2-2, 2-3)

and so on after the decimal point as we add more digits. So the factors would be one-half

(0.5), one-fourth (0.25), one-eighth (0.125), and so on. It seems a bit cumbersome, but I

think I get it.

This means that the binary 1011 would translate into 8 + 0 + 2 + 1 = 11. As soon as

you understand the basic principle, it’s easy!

By the way, this also works for fractional expressions. Take a look at this.

In decimal, each digit after the decimal point has factors using negative powers (10-1,

10-2 etc.). So we have one-tenth (0.1), one-hundredth (0.01), and so on.

(Decimal)

ones twosfoursEights

one-hundredthsone-tenthsOnes

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

42 Chapter 2 Digital Operations

Fixed-Point and Floating-Point

Next up, I’ll teach you a really important concept. In computers, there are two ways to

store fractions—either fixed-point or floating-point.

When using extremely small values like 0.00000000000000...001 or very large

 values like 1000000000000000..., it is a lot more practical to use floating-point fractions.

Hmm... Why is that? What’s the difference?

Well, for example, instead of writing a billion in decimal, as 1,000,000,000, you could write

it as 109 to save some space, right? We call this form scientific notation or standard form,

where the n in 10n is called the exponent. Floating-point fractions use scientific notation

when storing values.

In contrast, fixed-point fractions express values the way we’re used to, with a decimal

point. When expressing integers with this method, you can imagine the decimal point being

at the far right of the number. Here’s a comparison of the two.

Fixed-point Floating-point

decimal
point

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

The Computer's World Is Binary 43

Oh, okay. So if you’re using fixed-point fractions to express really large or really small

numbers, the number of digits you need increases by a lot. But if you’re using floating-

point, only the exponent gets bigger and smaller, while the number of digits stays the

same. Yeah, that’s really useful!

That’s right. That last example was in decimal, but since computers use binary, the prin-

ciple becomes even more relevant. The most common variant used is this one.

I made our example here, 1.69, decimal just to make it easier to understand. The number

would be in binary in a computer. The important part here is that this significand always

has to be greater than 1 and less than 2.

An example
significand

Significand

Exponent

Base

Hmm... So this representation makes it easy for computers to handle extremely small and

extremely large numbers, right? They’re also easy to use in calculations, huh.

Yes! And it’s also important to understand that the speed with which you can calculate

using floating-point numbers is a very important question and ties in deeply with CPU

performance. (See page 139 for a more detailed explanation.)

Generally, scientific calculations require an accuracy of only around 15 digits, but in

some cases, 30 are used. Some modern encoding algorithms even use integers of up to

300 digits! It’s worth mentioning that gaming systems that process real-time, high-fidelity

graphics use floating-point arithmetic extensively.

Ugh... I don’t think I could do those calculations in my head. I hate to lose to computers, but

I hope they’re at least advancing some fields of science!

An example of floating-point representation inside a computer

(using a base 10 number for illustration)

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

44 Chapter 2 Digital Operations

Addition and Subtraction in Binary

It’s finally time to talk about binary arithmetic. Let’s start by thinking about addition. First

off, adding two bits works like this!

Okay, that’s easy! The last equation, 1 + 1 = 10, means that we carried the 1 to the second

place value and the first digit became 0, right?

Yeah. If you understand how to add one bit to another, you should be able to understand

calculations with more digits as well. For example, when adding the binary numbers

(1011)
2
 + (1101)

2
, you just need to start from the right and work your way to the left, car-

rying digits as you go.* Take a look here.

Uh-huh, I just have to be careful with the carries, right? Binary addition is pretty simple!

Or, it might just be my genius shining through.

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10

Ca;y

Don’t
forget

to ca;y
the 1!

Hey! Okay then, let’s take a look at subtraction next. When doing subtraction, it is impor-

tant to learn how to create negative values using a technique called two’s complement.

Adding the two’s complement (a number that corresponds to the negative version of a

number) of a binary number A to another number B is the same as subtracting A from B!!

What do you think—pretty cool, right?

Ca;ied to the
next place value

place

* ()
2
 means the number is in binary representation and ()

10
 means decimal representation.

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

The Computer's World Is Binary 45

Ahh... I’m sorry to stop you when you’re on a roll, but I didn’t understand that at all...

What are you talking about?

Let’s start out slow in decimal. First off, let’s agree that subtracting 15 is the same as add-

ing -15. But what would you do if you weren’t allowed to use the minus sign at all? Is there

some other number that we can use to represent the number -15?

I... I have no idea. Stop putting on airs and just teach me already!

Where did your genius go? Well, have a look at these two equations then.

Whaaa...? You’re right, 0 and 00 are the same! But what happens to the 1 in 100 of the

equation B result?

Hah! Since we’re doing two-digit math at the moment, we don’t care about digits that carry

over beyond those two. Just pretend you can’t see them! We call those overflow, and we

just ignore them.

What kind of twisted reasoning is that? Is that even allowed?

Equation A Equation B

Ignore!

Looking at just the final two digits of these equations, we see that the result of equa-

tion A is 0 and the result of equation B is 00. We could therefore say that for the last two

digits, the results of 15 + (-15) and 15 + 85 are the same!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

46 Chapter 2 Digital Operations

Heh heh heh! Surprised? In situations like this, we say that 85 is the ten’s complement

of 15. In other words, we say that a number’s complement in some base is the smallest

number you have to add to the original number to make the number’s digits overflow. As

the name suggests, you can think of the numbers “complementing” each other to reach the

next digit.

And this complement corresponds to the original value’s negative form. So in this case,

85 is essentially equal to -15.

Let’s take another example. When calculating 9647 – 1200 = 8447, we might

as well calculate 9647 + 8800 = 18447 and ignore the carry. That’s because in

the result, we see that the lower four digits are the same. Therefore, we can use

8800 as the ten’s complement of 1200 during addition to get the same result as

we would get using subtraction.

As you can see, when you add two binary numbers and ignore the overflow, if the

result equals 0, it means the two numbers are complementary. To a number, simply add its

complement instead.

Okay... But finding the complement seems kinda hard...

Don’t worry, there is a really easy way to find a two’s complement. Just follow these steps.

It’s not farfetched—it’s awesome! It’s logical!! Anyway, let me show you how to do it in

binary.

Uhh... This is getting pretty hard to grasp! So using complements, we can perform sub-

traction using addition instead. I suppose that might be useful? So what happens if we try

this farfetched solution with binary numbers?

A/ the two numbers:
if the result is
0 (ignoring the

overflow), it means
the numbers are
complementary.

Ignore!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

The Computer's World Is Binary 47

Sweet! I tried finding the complement of that last example. Using this method, it was easy.

Computers (actually the ALUs) use this type of reasoning all the time for arithmetic opera-

tions (addition and subtraction). The only difference is that most ALUs perform subtraction

by adding the first number and the inverted second number. Then finally, they add 1 to

that sum. The order of operations is different, but the end result is the same, right?

I see. So there are some merits to binary, I suppose!

By the way... Don’t
french fries kinda

l&k like 1S and
onion rings kinda

l&k like 0S?

This must be like...
binary in the fried-

f6d world?!

And since the computer calculations only deal with 1s and 0s, this method is both

really simple and incredibly fast at the same time.

Let’s find the two’s complement to do subtraction!

Step 1: Invert all the digits of the first number from 1 to 0 and vice versa. (This is also

called finding the one’s complement.)

Step 2: Add 1 to this inverted version of the number.

And you’ll end up with the two’s complement!

...

Flip
a* the
digits!

A/ 1!

Complement

A great
discovery!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

48 Chapter 2 Digital Operations

Integrated Circuits Contain
Logic Gates

We* then, let’s
get into today’s

main topic.

First o',
have a careful
l&k at these!!

Don’t bring bugs
into restaurants!!

They’re
not bugs!

This is an extremely important
electronic component ca*ed

an integrated circuit (IC).

They’re inside many
di'erent electronics...

Even CPUs are just
very advanced and

complicated integrated
circuits.

Long time no s%!

What Are Logical Operations?

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

What Are Logical Operations? 49

Even so, this bug...
this IC... sure has a lot

of silvery legs...

They’re ca*ed pins and
are the paths in and out

of the circuit.

Digital electronic
signals transmi$ed as 1S

and 0S (high and low voltage)
pa: through these pins as

input and output.

Oh, so they’re
not just

decorations
then.

And here’s the
important part!

Lo and behold! Inside, the circuit
performs logical operations on
the 1S and 0S on the input pins and

produces the a2ropriate 1S and 0S
on the output pins!!

Logical
operations...? That
s%ms even more
complicated than
those arithmetic

operations...

No, I’ve decided to
think logica*y,
so that’* make
understanding
them a br%ze!!

...I think?

There’s no n%d to
get so defensive
about it. logical

operations are rea*y
simple and easy to

understand.

Wow !!

Logical
operations!

Pin

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

50 Chapter 2 Digital Operations

First, I want you to get
the general idea. The

inside of an integrated
circuit l&k something

like this...

This is a 74LS08
integrated circuit.

This is a labeled diagram
of the inside of this chip.

scritch

H+. Yeah, I can
s% that there are
four symbols that

l&k the same,
and they s%m to
be coKected to
thr% pins each...

Now let’s focus
on one of those

symbols.

Pins

A>ention!

Input A

Input B
Output

L&king closely,
you can s% that they
each have two inputs

and one output. We ca*
each of these pins a

logic gate.

I s%, so that
means... L&k at the

next part!

scritch

Pins

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Each logic gate
is like a magic
box where you

get some output
if you put things
into the inputs!

And the inputs and
outputs are, of

course, 1S and 0S...
yeah.

Yeah, that’s
right.

The Three Basic Logic Gates
(AND, OR, and NOT)

Then let me use
your magic box

analogy as we get
into the specifics.

Among the logic gates, the
most basic 1S are these: the
AND gate, the OR gate, and

the NOT gate.

Memorize a; of
them together!!

A* of them??
Is this a

b&tcamp?!

Don’t wo;y,
these gates’ rules are

rea*y simple.

Just think of
it like an oral

exam!

Each input and
the output can

either be 1 or 0.

Output ZLogic gate

Input A

Input B

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

52 Chapter 2 Digital Operations

Let’s a:ume that one
means a pa: and zero

means a fail in this case.

And that the inputs
are represented by

two interviewers who
can give either a pa:

or a fail.

Huh...

So if both don’t give
a pa:, the result

wi* be a fail...

In the case of an AND gate, the
output wi* only be a 1 (pa:) if
both inputs are 1S (pa:es). If

either input or both are 0 (fail),
the output wi* also

be a 0 (fail).

For an OR gate, it’s
enough if at least one
of the inputs is a one
(pa:) for the output

to be a one (pa:).

So if even a single
input gives a pa:, it
means you pa:ed...

what a relief...

Fail

Pa:

Pa:

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

What Are Logical Operations? 53

The NOT gate wi* flip the
input. So an input of one

(pa:) wi* give the output
zero (fail).

Rea*y?? So it
always completely

disregards the
interviewer’s

opinion?!

…we* yeah, it’s
just how logic

gates work.

But the important part is
that you understand that

even with the same input, AND
and OR gates can produce

di'erent outputs.

I’m sti* shocked by that
last NOT gate. I wonder

how the interviewer must
be f%ling...

Truth Tables and
Venn Diagrams

But there are even more
pa$erns, right? Like where

both inputs are 0S (fail)
and so on. In those cases,

the output would sti*
have to be a 0 (fail), right...

Just thinking about it is
making me depre:ed...

Hah! I have something
I want to show you!

A truth table spaKing
a* po:ible pa$erns!!
It’s a table containing

a* po:ible input/output
combinations!

Whip—

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

54 Chapter 2 Digital Operations

This is it!
Burn it into
your mind!!!

O&h! You can s% a* the
input and output po:ibilities.

that’s super useful!!

Also, when thinking
about logic gates,
VeK diagrams are

rea*y handy.

Oh, I remember
those from
junior high.

Yes, but the important
thing here is that these
VeK diagrams i*ustrate

two states.

The area inside
this rectangle is a

world that consists
only of regions

without color (0) or
with color (1), okay?

So using VeK
diagrams, we can
visualize the 1S

and 0S. Nice!

That’s right.
Then let’s use
this to take

a l&k at the
thr% logic
gates again
a* at once,
sha* we?

Swat—
If A and B are both 1,
the output is 1.

If A is 0 and B is 1,
the output is 0.

If A is 1 and B is 0,
the output is 0.

If both A and B are 0,
the output is 0.

OutputInput

Truth table for
the AND gate

The area inside the
rectangle is a world

of only 1S and 0S.

In this example, there
is only color (1) where

A and B intersect.

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

What Are Logical Operations? 55

A Summary of the AND, OR, and NOT Gates

Let’s summarize the first three basic gates. Let’s look at the symbols, truth tables, and

Venn diagrams as sets!

AND gate (Logic intersection gate)

Symbol

AND gates output 1 only when both inputs are 1 and are sometimes expressed in equa-

tion form as Z = A · B. The symbols used to represent AND are those for logical intersec-

tions: or .

Inputs Output

Truth table VeK diagram

OR gate (Logic union gate)

OR gates output 1 when either input is 1 and are sometimes expressed in equation form

as Z = A + B. The symbols used to represent OR are those for logical unions: + or .

Symbol Truth table VeK diagram

Inputs Output

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

56 Chapter 2 Digital Operations

NOT gate (Logic negation gate)

NOT gates output 0 only when the input is 1 and are sometimes expressed in equation

form as Z = A
−

. The symbol used to represent NOT is the one for logical negation (comple-

ment):
−
.

This white circle
indicates that 0 and 1
should be fli2ed!

Okay. Be extra careful about this though! In the examples here, we showed AND and OR

gates having only the two inputs A and B, but it’s not uncommon for these gates to have

three or more inputs.

Ohh! So you can also write them as A B, A + B, or A
−

. I think I understand all these forms

now.

So these input and output lines are called signals and can either be a 1 or 0. That’s easy to

remember.

In these cases, we require that all inputs of the AND gate be 1 for the output to be 1.

In the case of OR gates, we require that at least one input be 1 for the output to be 1.

Symbol Truth table VeK diagram

Input Output

Sometimes
more than

thr%!

Signal
pathways

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

What Are Logical Operations? 57

Other Basic Gates (NAND, NOR, and XOR)

Okay, let’s take a
l&k at NAND, NOR,

and XOR* gates next.

WHAT?!

* XOR is wri$en as EOR or EXOR in some cases.

You just said that AND, OR,
and NOT were the thr%

basic gates...

You’re just going to
take that back? Liar!

There’s even more of
them?!

Stop whining
and calm
down!!

You should know
about NAND, NOR,

and XOR t&.

And the
reason is...

Something
you’; realize

after you learn
about them!!!

Even more
zealous than

usual!

Let’s do it!

To>ering

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

58 Chapter 2 Digital Operations

A Summary of the NAND, NOR, and XOR Gates

Okay, let’s talk about the other basic gates. Actually, these gates are really just

combinations of AND, OR, and NOT gates!

NAND gate (Logic intersection complement gate)

The NAND gate is an AND gate wired to a NOT gate. The NAND gate’s output is therefore

the output of an AND gate run through a NOT (negation) gate. It’s sometimes written as

the equation Z = A B .

NOR gate (Logic union complement gate)

Symbol Truth table VeK diagram

Symbol Truth table VeK diagram

Input Output

Input Output

The same!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

What Are Logical Operations? 59

The NOR gate is an OR gate wired to a NOT gate. The NOR gate’s output is therefore the

output of an OR gate run through a NOT (negation) gate. It’s sometimes written as the

equation Z = A B .

XOR gate (Exclusive logic union gate)

XOR gates output 1 only when the inputs A and B are different. Such a gate is sometimes

written as the equation Z = A B.

The XOR gate’s function is shown in the schematic above, where you see a combination

of AND, OR, and NOT gates. The X in XOR stands for exclusive.

Oho! You were right. These gates really are just combinations of basic gates.

Symbol Truth table VeK diagram

Input Output

Output

The same!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

60 Chapter 2 Digital Operations

De Morgan’s laws

This might be kind of off topic, but don’t you feel a certain fascination whenever you hear

the word theorem or law? It’s so charming and cool, I can’t help but feel my heart throb

wistfully every time... Well, let me tell you about an important theorem! Here it is! De Mor-

gan’s indispensable laws for logical operations.

Aah, I might have eaten a little bit too much today. But fast food can be really good some-

times, don’t you think?

Stop ignoring me! Well I suppose formulas like this can look complicated at first glance...

Let’s start with the important part. This law basically just says that you can swap AND for

OR operators and vice versa. Does that make it clearer?

Yeah! I can see that the left and right sides have big differences in how they use (AND)

and + (OR). Is it like this?

Oh-

De Morgan’s Theorem

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

What Are Logical Operations? 61

That’s it! It also means that we can use De Morgan’s laws to show our circuits in different

ways. Using this technique, it’s easy to simplify schematics when necessary.

But they’re completely different! There’s really no problem even though the left and right

side look nothing alike?

I see... Then you won’t mind if I just rewrite all of them then? This is a law I like!

Yeah, the expressions might be different, but their functions are the same. Since logic gates

(digital gates) only work with 1s and 0s, everything stays logically the same even if you flip

everything. We’re just leveraging that particular feature of the math.

Conversions using De Morgan’s laws

De
Morgan’s

laws

Both of these are NAND gates!

Both of these are NOR gates!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

62 Chapter 2 Digital Operations

The Addition Circuit

Heh, it s%ms I’ve
fina*y mastered

a* the gate
symbols...

L&k! Revel in my ski*!

Snort

Hey, that’s rude!

So;y about
that.

But if you’re
rea*y satisfied with

scri^les like those, then
I su2ose you’re sti* far
from understanding the

subtleties of logic gates.

Logic gates aren’t g&d for
anything unle: you make a circuit

that actua*y does something useful!!

Wha- what do you mean?!

Tada!

Swat!

ScriN
le

ScriNle

Circuits That Perform Arithmetic

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Take a l&k! This is a
circuit that actua*y does

something worthwhile!

Take a g&d l&k at the
magnificence of this half

aOer circuit!!

!!

This is a very old,
rudimentary circuit

but...

… a useful one
that performs

a/ition.

It does f%l a bit
magnificent, a* wired up
like that... I s% it’s using

AND and XOR gates!

But I don’t s%
how it can a/

numbers...

I wi* let you
e-explain it to me!

If you want me
to te* you, just

say so...

Thunder!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

64 Chapter 2 Digital Operations

The Half Adder

Let me explain what the half adder I showed you is all about. Even though I suspect

you won’t need that much explaining at this point. First off, do you remember single-bit

addition?

If we bundle all of these together, it kind of starts to look like a truth table, doesn’t it?

Let’s treat the two bits as inputs A and B, and let’s standardize our output to two digits, so

an output of 1 looks like 01.

Well then, do you notice anything? Pay special attention to the gray area.

Wh—what? Could it be...? The lower digit output... it looks just like an XOR gate’s truth

table (see page 59)! XOR produces an output of 1 only if the inputs are different, right?

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10

The lower digit

output

(The digit
is ca;ied.)

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Perform Arithmetic 65

That’s correct. This time, look only at the upper output digit.

Hmm, that looks just like the truth table for an AND gate (see page 55)! An AND gate’s

output is 1 only when both inputs are 1. . . . That must mean . . .

As soon as you get that part, it seems really easy, right? The lower digit comes from output

S, and the upper digit comes from output C. In this case, S stands for sum, and C for carry.

This is how we can get two outputs from two inputs with the same half adder circuit. And

this is also how we can add two bits together!

That by combining an XOR and AND gate, we can get two outputs (one for the upper

digit, one for the lower digit) and perform single-bit addition!

Half A/er

The u2er digit

output

(The digit
is ca;ied.)

output
S

input

output
C

input

(Ca;y)

(The value
of A + B)

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

66 Chapter 2 Digital Operations

Full Adder and Ripple Carry Adder

After learning how the half adder works, it seems really simple! Hmm, but, there’s still

something that bothers me about it.

Heh, an acute observation for sure. It is true that the half adder cannot deal with carries

from previous digits and can therefore only ever add two single bits. That’s why half adders

are just that, “half an adder.” It’s no use putting it down for something it can’t help.

I’m not dissing anyone! Why am I the bad guy all of a sudden?!

Don’t underestimate the half adder though! Actually, using two half adders, you can make a

full adder. In addition to having the inputs A and B, you can use an additional input for the

carry in this circuit.

In that circuit, there’s an output for the carry, but there’s no input for the carry from

the previous digit. That means you can only ever add two single digits, right? That doesn’t

seem very useful. In fact, only being able to add two single digits seems pretty useless!

Think of water ri2les

Take a look at this next schematic. We call this circuit with three inputs and two

outputs a full adder. We’ll put each half adder into its own box to make the diagram a bit

easier to understand.

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Perform Arithmetic 67

You were right, it’s using two half adders! Two halves really make a whole. I guess C
in
 is the

carry input and C
out

 is the carry output then.

That’s right. And by connecting several of these full adders together, we can add any num-

ber of bits! We call a circuit like this a ripple carry adder.

Uh-huh. So each adder’s output carry goes into the next adder’s input carry. This is how

the carry flows so that we’re able to do the calculation properly.

In this example, we’re using four adders, so we can add four digits. We’ve also put the

full adders into their own boxes. During subtraction, we would deal with the inverse carry

instead (borrow).

Fu* a/er

Ri2le ca;y a/er

Thr%
inputs

Half a/er Half a/er

Fu* a/erFu* a/erFu* a/er

The ca;ies are being propagated

Half a/er

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

68 Chapter 2 Digital Operations

The Ripple Carry Adder and Carry Look-ahead Adder

But even then... that ripple carry adder kind of makes me feel a sense of fellowship with

how it moves the carry after each step in the calculation. It’s really similar to how we

humans do calculations on pen and paper, moving the carry from each lower place value to

the next higher place value.

Yeah. But that’s actually a big problem—it takes a lot of time to keep moving the carry from

each calculation to the next.

Yeah, that seems a bit slow... Addition and subtraction are pretty common too, so I suppose

they’re not something you want to be doing slowly. Hmm. So what do we do about it?!

In ripple carry adders, the more digits there are, the slower the calculation speed will

be because of the larger propagation delay.

An artistic impre:ion of a
ri2le ca;y a/er

Ca;y propagation delay...

I’m so bored...

U2er digit

Sti*
nothing...

Okay,
roger
that!

Here! A
ca;y!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Perform Arithmetic 69

Heh heh heh. To fix this problem, someone came up with what is known as a carry look-

ahead adder.

It basically delegates the carry calculations to a completely different circuit that serves

its results to each digit’s adder. Using this method, the upper digits can do their calculations

right away, without having to wait!

Eeeh, is that even possible? So there’s some other dedicated circuit that decides whether or

not there’s a carry?

Yeah. It determines whether there is a carry in either direction during addition and sub-

traction. The downside is that the circuit is a lot bigger, but calculation times are drastically

reduced.

Hmm. So it’s reducing calculation times with all kinds of smart tricks then. When we first

talked about making a circuit for addition, I was imagining something pretty small, but the

final product is quite impressive.

An artistic impre:ion of a
ca;y l&k-ahead a/er

U2er digit
The circuit that deals

 with ca;ies
(L&kahead-ca;y unit)

They don’t have to wait for the ca;y!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

70 Chapter 2 Digital Operations

Circuits with Memory
Are a Necessity!

Now, let’s get
into today’s last

topic.

Let’s talk about
circuits with

memory.

O-kay... this memory has
to be the same memory
we talked about last

time, right?

Back then, you
showed me

these things...
(S% page 18.)

Hm, yeah. It’s true
that when we say

“memory,” we usua*y
mean primary memory

like this.

But, there’s
actua*y memory

storage inside the
CPU as we*.

And this storage is ca*ed
registers!!

Data and
program

instructions,
among other
things used in
operations

Memory!

RegistersMemory!

Circuits That Remember

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Remember 71

Registers?
Never heard

of ‘em.

What are those
things?

A simple analogy
for registers might
be something like a

disposable scratch pad.

When performing
operations,

registers are
used to store

temporary
values!

This kind of memory
is more short-term
than other types of

memory.

So there are many
types of memory, each

made for a specific
task.

We*, the important thing with
a* of them is that by using
them, we are able to use

previous memory (the state) in
future operations.

That is, previous memories
can a'ect future

calculation outputs!!

Could you...
say that again in
plain language,

please?

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

72 Chapter 2 Digital Operations

Okay, then imagine...

That you are about
to buy a drink from a

vending machine.

Yay! I’* have a coke!!

Hey, we’re talking
hypothetica*y here!

To buy a 130-yen cola, you
first have to put 100 yen in,
then 50 yen... after that, the

machine should display a
total of 150 yen, right?

That just means that the
machine remembers the sum

of the 100 yen you put in
before and the 50 yen you

inserted just now.

What do you think? Do
you understand how the
previous memory of 100

yen a'ected the end
result of 150 yen?

Ah, it s%ms very obvious
now. The reason why it’s
able to show the sum

of 150 yen is that it has
memory.

FuQy
motivated!!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Remember 73

If it didn’t have
any memory...

What a rip-o'! I’d
have no choice but to

destroy it!!

Calm down,
violence solves

nothing!

Comparing cu;ent memory
to past memory

I sold 3 today > I sold 2
yesterday. This means I sold
more today than yesterday.

This is why computers,
such as the one in the vending
machine, n%d to have memory

circuits to be useful.

They reuse results from
previous calculations

together with new data as
input to other calculations.

I’ve sold 6 up until
yesterday + I sold
3 today = I’ve sold

9 in total.

Many program
instructions are

like this.

I s%. I gue: it makes
sense that memory

circuits are important
then.

...Now that that’s
se$led, I think
I’* go and have
another cola.

She got thirsty?
The power of
su}estion...

ARle Ya-y!

Not that I reca*...

Didn’t I

jus
t put

100 yen in??

Wha-at!!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

74 Chapter 2 Digital Operations

Flip-flop, the Basics of Memory Circuits

Ngh. I can’t even imagine a circuit that has memory. Even human memory is really compli-

cated you know...

Yeah. You have to think really simple. Computers can only use 1s and 0s right? That means

that memory to a computer means somehow storing the states of 1s and 0s.

I’ve already explained that these 1s and 0s actually correspond to different voltage

levels (low and high) (see page 37). This means that to save a 1, we would have to create

something that can retain that state over a longer period of time, as in the graph below.

We call storing data like this latching.

I see. But it’s probably not very useful if it just stays in that state forever... What if I want it

to go back to 0 later on or I want to overwrite the memory with something else? Wouldn’t

it make sense to be able to store whatever I want, whenever I want?

Yeah, that’s right! For example, if you turned a room’s light switch on, it would stay that

way until someone turned it off again, and then it would stay off until someone turned it

off again. It would be great if we could create some kind of trigger condition to freely swap

between the 1 and 0 states, just as we do with the light switch.

That is, we would like to be able to store 1s and 0s indefinitely while still being able to

flip each bit individually whenever we want. This is exactly what memory circuits do!

State remains 1

Time

So this
is a latch

then!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Remember 75

Uhm, that sounds a bit selfish, doesn’t it? I want to store 1s and 0s, but I also want to be

able to flip them at will.

It is selfish, but flip-flop circuits grant us the ability to change states! Flip-flops are a basic

component of any memory circuit.

Flip-flop...? That’s a cute name, but how are they useful?

They’re super useful!! First take a look at the picture below. To make it easier to under-

stand, I’ve put the flip-flop in its own box. Using one of these, we can store one bit of data.

Yes. Pay special attention to the Q output! This is the output that will stay either 1 or 0. Q

will always be the inverse of Q
−

. So, if Q is 1, then Q
−

 will be 0. Q
−

 can be very useful to have

when designing a circuit, but we’re going to ignore it for now.

Uh-huh. Then, how does it work? Tell me what’s inside that box!

All in good time. First off, there are several types of flip-flops. Both the function and circuit

depend on this type. Out of these, I’ll teach you about RS flip-flops, D flip-flops, and T

flip-flops.

O-kay. There are inputs. . . . And two outputs Q and Q
−

. . . .

The reason why there are no concrete symbols for the inputs is that they change

depending on the type of flip-flop we use.

Inputs

Important!

Outputs

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

76 Chapter 2 Digital Operations

The RS Flip-flop

Okay, I guess RS flip-flops come first? So the box has two input signals, R and S. Rice...

Sushi... Rice and sushi?!

Um, no. R means reset and S means set. The reset and set inputs are the two main fea-

tures of this type of circuit.

I might be giving away the main point too quickly here, but setting S to 1 will set Q to

1 and setting R to 1 will reset Q to 0. Once Q has changed state, removing the input signal

won’t change it back. It will keep that state until the countersignal (S for R and vice versa) is

sent. As soon as that happens it will, of course, flip the saved state back though.

Yeah. It might seem a bit complicated here, but the circuit looks like the figure on the next

page. In accordance with De Morgan’s laws (see page 60), it can be created using either

NAND gates or NOR gates.

Whoa. It looks a bit weird... There are two NAND gates (or NOR gates), but they’re all

tangled up in figure eights.

Yep! The two circuits are interconnected with the output of one acting as one of the inputs

to the other.

Hmm, so that means that it remembers which of the two got set to 1 last? If S got set

to 1 most recently, then the latch remembers 1, and if R was the last 1, it remembers 0!

Is that it?

They’re also sometimes
ca*ed RS latches.

You can also flip the
R and S and ca* them

SR flip-flops.

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Remember 77

It’s thanks to this figure eight that the circuit is able to retain either a 1 or a 0. We call

this a latch. You could say that this figure eight is the most important characteristic of a

memory circuit!

Hmm, even so, it’s pretty complex. If I look back and forth between the schematic and the

truth table, I get the feeling I kind of get it, but still...

Oh, I see. So just follow the traffic, er, circuit rules, right?

Let’s see, the part of the truth table that says “does not change” means that output Q

either stays a 1 or a 0 indefinitely, right? But what does the “not allowed” on the bottom

mean? What’s not allowed?!

Ah, yeah. That just means that you are not allowed to trigger both set and reset at the

same time. Remember that since the circuit is active-low, this means that both outputs

can’t be 0 at the same time. If you were to set both to 0, this would make both Q and

Q
−

 output 1 until you changed one of them back—but the outputs are always supposed to

be either 0 and 1, or 1 and 0. It’s not allowed to invalidate the rules we set for this logic

circuit.

RS flip-flop

FunctionOutputsInputs

Does not
change

Retains its
cu;ent output

Set

Not a*owed

Reset

Note that S and
R have negation

symbols! This is ca*ed
active-low, and it means
they are activated when

the input voltage is
low (0) instead of

high (1).

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

78 Chapter 2 Digital Operations

The D Flip-flop and the Clock

Let’s see. The next one is the D flip-flop, I think. The inputs are D and... what’s this triangle

next to the C?! It looks like that piece of cloth Japanese ghosts wear on their headbands!!

That observation is pretty far removed from the computer world. But I suppose it’s a bit

cryptic and warrants an explanation. First off, it’s easiest to think of the D as being for

data. That triangle is the symbol for a rising edge, and the C stands for clock.

That’s right! Computers need some kind of fixed-interval digital signal to synchronize all

the operational states in their circuits. That’s what the clock does!

Just like a normal clock measuring time, it flips between high and low voltage (1

and 0) in fixed intervals. It has nothing to do with the circuit’s input or output though—

it’s completely separate.

Um... Rising edge?? And the clock—is that just a normal clock?

An edge is when a signal
transitions betw%n two levels

(0 and 1 for example).

A clock

Time

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Remember 79

Hmm. It really reminds me of a clock... Ticktock, ticktock... Just like we plan our days with

the help of clocks, I guess circuits need them, too.

Yeah. When a circuit needs to take some action, the clock can sometimes act as its cue.

And inside the clock, what is known as the rising edge acts as that action signal. Have

a look!

Ohh! Those arrows are at even intervals on the clock graph.

When the clock goes from low to high (0 to 1), we see a rising edge, and when it goes back

from high to low (1 to 0), we see a falling edge.

Oho, I think I get it. So the rising and falling edges are like ringing bells on the clock, right?

When the bell rings, it acts like a signal to take action. Like at the start and end of class, for

example.

That’s just it! That’s a pretty good analogy coming from you.

When the clock goes
from high to low

Fa*ing edge

When the clock goes
from low to high

Rising edge

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

80 Chapter 2 Digital Operations

Okay, let’s get back to the problem. In a D flip-flop, every time a rising edge passes, the

input 1 or 0 at the D input is copied directly to the output Q.

It might be easier to understand by looking at the timing diagram below. A timing

diagram is a good way to see how signals change their state over time.

Mmmh. It’s a bit complicated, but I think I get it now that I’ve looked over the timing

diagram. In any case, the main characteristic of the D flip-flop seems to be that it acts in

sync with the clock’s rising edges! Hmm, it seems like clocks are super important both to

modern man and circuits.

The important lesson here is that the input D can change as much as it wants,

but Q won’t change until a rising edge arrives!

Copy!
Clock

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Remember 81

The T Flip-flop and Counters

So the last one is the T flip-flop? Wait, it only has one input! Did you forget to draw

the rest?

Fuhahaha! Like I would ever forget! The T flip-flop only has one input, as you can see, and

is pretty simple. Whenever the input T changes from 0 to 1, or 1 to 0, the output stored in

Q flips state. It looks something like this time chart.

Oh, this was super easy to understand! It’s a memory circuit even though it has only one

input.

There are T
flip-flops that
activate just on
fa*ing edges
instead (1 to 0).

Output Q

Input T

FlipFlipFlip

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

82 Chapter 2 Digital Operations

By the way, flipping between 1 and 0 is called toggling. The T in T flip-flop actually stands

for toggle! Also, by connecting several T flip-flops together as in the schematic below, you

can make a circuit that can count—a counter circuit.

This circuit shows how several T flip-flops
to}led by the fa*ing edge of an input signal

can act as a counter.

Looking at the time chart, do you see that each output signal has half as many toggles as

its input signal? This means that the period of the output signals is twice as long as the

period of the input signals. I’ve put all three of the flip-flops in the schematic above into

this time chart so you can see all of their individual outputs next to each other when they

are connected.

Umm, but why do we say that the circuit can count?

Counter circuits

The first flip-flop will toggle its output state every time the input on the far left

changes from high to low. Consequently, the second flip-flop will toggle its output when-

ever the first flip-flop’s output changes from high to low. All following outputs will keep

toggling in this pattern. If the input signal is connected to a clock, then each flip-flop in

the series will toggle every 2(n − 1) clock cycles if n is the flip-flop’s position in the series. Put

another way, the period of each flip-flop’s output signal will be 2n of the original signal’s

period. Counters that work this way are called asynchronous counters, since not all flip-

flops are connected to the same clock but, instead, each flip-flop’s clock after the first is

the output signal of the flip-flop that came before. In contrast, there is a circuit commonly

found in CPUs called a synchronous counter. As the name here implies, all flip-flops in this

type of counter trigger on the signal from the same clock, meaning they all toggle at the

same time, in parallel. It’s worth mentioning that I’ve simplified these descriptions to make

them easier to understand.

If you look at each column in this graph individually, you should see that the digits from

Q
2
, Q

1
, and Q

0
 form binary numbers! Isn’t it cool that every time we have a falling edge on

the input of the first T flip-flop, this binary number increases by 1? It’s counting!

Input

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuits That Remember 83

Wow, you’re right! Q
2
 corresponds to the 22 digit, Q

1
 to 21, and Q

0
 to 20, right?

If you look at Q
2
, Q

1
, and Q

0
 in order, the first column forms 000 (the number 0), the

second one 001 (1), the third 010 (2), and the fourth 011 (3) in binary. So using this tech-

nique, you can actually make the circuit count! That’s a really smart design.

Yeah. In this example, we used three flip-flops, so that lets us express 23 (8) numbers,

meaning we can count from zero to seven.

Yeah, well that’s it for flip-flops. Just don’t forget what I said at the start, that flip-flops are

the foundation of any memory circuit!

Haha, so they’re the base for a lot of different devices, basically. And even though they have

a cute name, they’re super useful circuits we can’t do without!

Oh, that seems like it could be really useful for a lot of things.

You can actually make counters from other types of flip-flops, like D flip-flops, for

example. Using some other tricks, you can also make circuits that count down if you want.

This means that both primary memory and CPU registers use flip-flops at their core.

And flip-flops are also the basis of any counter circuit, just like what we just talked about.

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

84 Chapter 2 Digital Operations

Thanks for today!
I learned a lot!

Heh, we* the things
we talked about

today are sti* just
the basics.

Don’t forget
them, though.

Don’t wo;y!! There’s no
way that someone with
my exceptional memory
and inte*igence would

forget anything!

Exceptional
memory, huh...

So that means that
you remember every

shogi o2onent
you’ve ever played

then?

We***, you
know, it’s like,

s%...

It’s not like the heroine
of the story remembers

every slimeba* she’s
slain, right...?

...you fe* right into
that one, wow......

I-I can’t help it if I
don’t remember!!!!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

Circuit Design Today (CAD and FPGA) 85

Circuit Design Today (CAD and FPGA)

Multipurpose integrated circuit design is surprisingly similar to software development

these days. It’s usually accomplished using a hardware description language (HDL) to

define the operation of a circuit.

In the past, circuits were drawn using logical circuit symbols, much like the 1s we

have shown in this book, but these symbols are now used mostly just for very simple cir-

cuits. The development of computer-aided design (CAD) programs allows people to design

complicated circuits with relative ease.

But, it’s important to learn the basics since it can be useful to know these sym-

bols when trying to figure out how data flows through a digital circuit or when trying to

understand a particular feature of some schematic.

At the dawn of CPU development, it was common to create reference circuits con-

sisting of many AND, OR, and NOT gates. These were then used when iterating, proto-

typing, and evaluating new generations of CPUs and other ICs.

By doing this, it was possible to test each function of the advanced circuit individually

and even hardwire the circuits together to try to work out problems in the design if some

error was detected.

Nowadays, reference circuits like these are rarely used in development. Instead

much more flexible field-programmable gate array (FPGA) circuits are preferred.

FPGAs consist of a series of logic blocks, which can be wired together in different

ways depending on the programming. Some of these blocks contain lookup tables to map

the usually available 4–6 bits of input to output in a truth table–like format. The number

of lookup tables in an FPGA can range anywhere from a couple of hundred to more than

several millions, depending on the FPGA model.

And of course, it’s possible to reprogram all of the tables whenever needed. In this

way, the same FPGA circuit can be used to perform the functions of many different types

of ICs. You can simulate the function of a CPU using an FPGA if you want to, but it’s a

lot cheaper and easier to mass-produce a dedicated circuit instead. Even so, since the

price of FPGAs is dropping and development costs for new ICs are high, if the life span or

projected sales of a particular IC are not high enough, it might be more cost-effective to

simply use an FPGA.

FPGAs can, just as the name su}ests, be reprogra+ed
“in the field” to change the function of the IC completely.

They are indispensable to circuit designers.

CLA
CK

CLA
CK

Awesome,
I’m going
to tailor
this to my

n%ds!

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤

