
In the spring of 2021, nearly all of the 
American West was in a drought. Officials  

in Southern California declared a water  
emergency in April, citing unprecedented  

conditions. This probably didn’t come as news to  
residents of California and other Western states.  
Drought conditions like those in the West in 2021 are  
becoming increasingly common, yet communicating  
the extent of the problem remains difficult. How can  
this data be presented in a way that is both accurate  
and compelling enough to get people to take notice?

Data visualization designers Cédric Scherer and Georgios Karamanis 
took on this challenge in the fall of 2021 to create a graph of US drought 
conditions over the last two decades for the magazine Scientific American. 
They turned to the ggplot2 package to transform dry data (pardon the pun) 
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from the National Drought Center into a visually arresting and impactful 
visualization.

This chapter explores why the data visualization that Scherer and 
Karamanis created is effective and introduces you to the grammar of graphics, 
a theory to make sense of graphs that underlies the ggplot2 package. You’ll 
then learn how to use ggplot2 by re-creating the drought graph step-by-step. 
In the process, I’ll highlight some key principles of high-quality data visual-
ization that you can use to improve your own work.

The Drought Visualization
Other news organizations had relied on the same National Drought Center 
data in their stories, but Scherer and Karamanis visualized it so that it both 
grabs attention and communicates the scale of the phenomenon. Figure 2-1 
shows a section of the final visualization (due to space constraints, I could

Figure 2-1: A section of the final drought visualization, 
with a few tweaks made to fit this book
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include only four regions). The graph makes apparent the increase in 
drought conditions over the last two decades, especially in California and 
the Southwest.

To understand why this visualization is effective, let’s break it down. 
At the broadest level, the data visualization is notable for its minimalist 
aesthetic. For example, there are no grid lines and few text labels, as well 
as minimal text along the axes. Scherer and Karamanis removed what 
statistician Edward Tufte, in his 1983 book The Visual Display of Quantitative 
Information, calls chartjunk. Tufte wrote that extraneous elements often  
hinder, rather than help, our understanding of charts (and researchers and 
data visualization designers have generally agreed).

Need proof that Scherer and Karamanis’s decluttered graph is better 
than the alternative? Figure 2-2 shows a version with a few tweaks to the 
code to include grid lines and text labels on axes.

Figure 2-2: The cluttered version of the drought  
visualization
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It’s not just that this cluttered version looks worse; the clutter actively 
inhibits understanding. Rather than focusing on overall drought patterns 
(the point of the graph), our brains get stuck reading repetitive and unnec-
essary axis text.

One of the best ways to reduce clutter is to break a single chart into 
a set of component charts, as Scherer and Karamanis have done (this 
approach, known as faceting, will be discussed further in “Faceting the Plot” 
on page 17). Each rectangle represents one region in one year. Filtering the 
larger chart to show the Southwest region in 2003 produces the graph 
shown in Figure 2-3, where the x-axis indicates the week and the y-axis indi-
cates the percentage of that region at different drought levels.

Figure 2-3: A drought visualization for the Southwest 
in 2003

Zooming in on a single region in a single year also makes the color 
choices more obvious. The lightest orange bars show the percentage of the 
region that is abnormally dry, and the darkest purple bars show the per-
centage experiencing exceptional drought conditions. As you’ll see shortly, 
this range of colors was intentionally chosen to make differences in the 
drought levels visible to all readers.

Despite the graph’s complexity, the R code that Scherer and Karamanis 
wrote to produce it is relatively simple, due largely to a theory called the 
grammar of graphics.

The Grammar of Graphics
When working in Excel, you begin by selecting the type of graph you want 
to make. Need a bar chart? Click the bar chart icon. Need a line chart? Click 
the line chart icon. If you’ve only ever made charts in Excel, this first step may 
seem so obvious that you’ve never even given the data visualization process 
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much thought, but in fact there are many ways to think about graphs. For 
example, rather than thinking of graph types as distinct, we can recognize 
and use their commonalities as the starting point for making them.

This approach to thinking about graphs comes from the late statistician 
Leland Wilkinson. For years, Wilkinson thought deeply about what data visu-
alization is and how we can describe it. In 1999 he published a book called 
The Grammar of Graphics (Springer) that sought to develop a consistent way of 
describing all graphs. In it, Wilkinson argued that we should think of plots 
not as distinct types, à la Excel, but as following a grammar that we can use 
to describe any plot. Just as English grammar tells us that a noun is typically 
followed by a verb (which is why “he goes” works, while the opposite, “goes 
he,” does not), the grammar of graphics helps us understand why certain 
graph types “work.”

Thinking about data visualization through the lens of the grammar of 
graphics helps highlight, for example, that graphs typically have some data 
that is plotted on the x-axis and other data that is plotted on the y-axis. This is 
the case whether the graph is a bar chart or a line chart, as Figure 2-4 shows.

Figure 2-4: A bar chart and a line chart showing  
identical data

While the graphs look different (and would, to the Excel user, be dif-
ferent types of graphs), Wilkinson’s grammar of graphics emphasizes their 
similarities. (Incidentally, Wilkinson’s feelings on graph-making tools like 
Excel became clear when he wrote that “most charting packages channel 
user requests into a rigid array of chart types.”)

When Wilkinson wrote his book, no data visualization tool could imple-
ment his grammar of graphics. This would change in 2010, when Hadley 
Wickham announced the ggplot2 package for R in an article titled “A 
Layered Grammar of Graphics,” published in the Journal of Computational 
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and Graphical Statistics. By providing the tools to implement Wilkinson’s 
ideas, ggplot2 would come to revolutionize the world of data visualization.

Working with ggplot2
The ggplot2 R package (which I, like nearly everyone in the data visualiza-
tion world, will refer to simply as ggplot) relies on the idea of plots having 
multiple layers. This section will walk you through some of the most impor-
tant ones. You’ll begin by selecting variables to map to aesthetic properties. 
Then you’ll choose a geometric object to use to represent your data. Next, 
you’ll change the aesthetic properties of your chart (its color scheme, for 
example) using a scale_ function. Finally, you’ll use a theme_ function to set 
the overall look and feel of your plot.

Mapping Data to Aesthetic Properties
To create a graph with ggplot, you begin by mapping data to aesthetic prop-
erties. All this really means is that you use elements like the x- or y-axis, 
color, and size (the so-called aesthetic properties) to represent variables. You’ll 
use the data on life expectancy in Afghanistan, introduced in Figure 2-5, to 
generate a plot. To access this data, enter the following code:

library(tidyverse)
gapminder_10_rows <- read _ csv("https:// data . rwithoutstatistics . com / data / gapminder _ 10 _ rows . csv")

This code first loads the tidyverse package, introduced in Chapter 1, 
and then uses the read_csv() function to access data from the book’s website 
and assign it to the gapminder_10_rows object.

The resulting gapminder_10_rows tibble looks like this:

#> # A tibble: 10 × 6
#>    country     continent  year lifeExp      pop gdpPercap
#>    <fct> <fct>     <int>   <dbl>    <int>     <dbl>
#>  1 Afghanistan Asia 1952    28.8  8425333      779.
#>  2 Afghanistan Asia 1957    30.3  9240934      821.
#>  3 Afghanistan Asia 1962    32.0 10267083      853.
#>  4 Afghanistan Asia 1967    34.0 11537966      836.
#>  5 Afghanistan Asia 1972    36.1 13079460      740.
#>  6 Afghanistan Asia 1977    38.4 14880372      786.
#>  7 Afghanistan Asia 1982    39.9 12881816      978.
#>  8 Afghanistan Asia 1987    40.8 13867957      852.
#>  9 Afghanistan Asia 1992    41.7 16317921      649.
#> 10 Afghanistan Asia 1997    41.8 22227415      635.

This output is a shortened version of the full gapminder data frame, 
which includes over 1,700 rows of data.

Before making a chart with ggplot, you need to decide which vari-
able to put on the x-axis and which to put on the y-axis. For data showing 
change over time, it’s common to put the date (in this case, year) on the 
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x-axis and the changing value (in this case, lifeExp) on the y-axis. To do so,
define the ggplot() function as follows:

ggplot(
  data = gapminder_10_rows,
  mapping = aes(
    x = year,
    y = lifeExp
  )
)

This function contains numerous arguments. Each argument goes 
on its own line, for the sake of readability, separated by commas. The data 
argument tells R to use the data frame gapminder_10_rows, and the mapping 
argument maps year to the x-axis and lifeExp to the y-axis.

Running this code produces the chart in Figure 2-5, which doesn’t look 
like much yet.

Figure 2-5: A blank chart that maps year values to the 
x-axis and life expectancy values to the y-axis

Notice that the x-axis corresponds to year and the y-axis corresponds  
to lifeExp, and the values on both axes match the scope of the data. In the 
gapminder_10_rows data frame, the first year is 1952 and the last year is 1997. 
The range of the x-axis has been created with this data in mind. Likewise, 
the values for lifeExp, which go from about 28 to about 42, will fit nicely 
on the y-axis.

Choosing the Geometric Objects
Axes are nice, but the graph is missing any type of visual representation 
of the data. To get this, you need to add the next ggplot layer: geoms. 
Short for geometric objects, geoms are functions that provide different ways 
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of representing data. For example, to add points to the graph, you use 
geom_point():

ggplot(
  data = gapminder_10_rows,
  mapping = aes(
    x = year,
    y = lifeExp
  )
) +
  geom_point()

Now the graph shows that people in 1952 had a life expectancy of 
about 28 and that this value rose every year in the data set (see Figure 2-6).

Figure 2-6: The life expectancy chart with points added

Say you change your mind and want to make a line chart instead. All 
you have to do is replace geom_point() with geom_line() like so:

ggplot(
  data = gapminder_10_rows,
  mapping = aes(
    x = year,
    y = lifeExp
  )
) +
  geom_line()

Figure 2-7 shows the result.
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Figure 2-7: The same data as a line chart

To really get fancy, you could add both geom_point() and geom_line() as 
follows:

ggplot(
  data = gapminder_10_rows,
  mapping = aes(
    x = year,
    y = lifeExp
  )
) +
  geom_point() +
  geom_line()

This code generates a line chart with points, as shown in Figure 2-8.

Figure 2-8: The same data with both points and a line
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You can swap in geom_col() to create a bar chart:

ggplot(
  data = gapminder_10_rows,
  mapping = aes(
    x = year,
    y = lifeExp
  )
) +
  geom_col()

Notice in Figure 2-9 that the y-axis range has been automatically 
updated, going from 0 to 40 to account for the different geom.

Figure 2-9: The life expectancy data as a bar chart

As you can see, the difference between a line chart and a bar chart isn’t 
as great as the Excel chart-type picker might have you believe. Both can 
have the same underlying properties (namely, years on the x-axis and life 
expectancies on the y-axis). They simply use different geometric objects to 
visually represent the data.

Many geoms are built into ggplot. In addition to geom_bar(), geom_point(), 
and geom_line(), the geoms geom_histogram(), geom_boxplot(), and geom_area() 
are among the most commonly used. To see all geoms, visit the ggplot doc-
umentation website at https:// ggplot2 . tidyverse . org / reference / index . html#geoms.

Altering Aesthetic Properties
Before we return to the drought data visualization, let’s look at a few addi-
tional layers you can use to alter the bar chart. Say you want to change the 
color of the bars. In the grammar of graphics approach to chart-making, 
this means mapping some variable to the aesthetic property of fill. (For a 
bar chart, the aesthetic property of color would change only the outline of 
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each bar.) In the same way that you mapped year to the x-axis and lifeExp to 
the y-axis, you can map fill to a variable, such as year:

ggplot(
  data = gapminder_10_rows,
  mapping = aes(
    x = year,
    y = lifeExp,
    fill = year
  )
) +
  geom_col()

Figure 2-10 shows the result. Now, the fill is darker for earlier years, and 
lighter for later years (as also indicated by the legend, added to the right of 
the plot).

Figure 2-10: The same chart, now with added colors

To change the fill colors, use a new scale layer with the scale_fill_
viridis_c() function (the c at the end of the function name refers to the fact 
that the data is continuous, meaning it can take any numeric value):

ggplot(
  data = gapminder_10_rows,
  mapping = aes(
    x = year,
    y = lifeExp,
    fill = year
  )
) +
  geom_col() +
  scale_fill_viridis_c()
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This function changes the default palette to one that is colorblind-
friendly and prints well in grayscale. The scale_fill_viridis_c() function is 
just one of many that start with scale_ and can alter the fill scale. Chapter 11 
of ggplot2: Elegant Graphics for Data Analysis, 3rd Edition (Springer, 2023), 
discusses various color and fill scales. You can read it online at https:// ggplot2 
- book . org / scales - colour . html.

Setting a Theme
The final layer we’ll look at is the theme layer, which allows you to change 
the overall look and feel of your plots (including their background and grid 
lines). As with the scale_ functions, a number of functions also start with 
theme_. Add theme_minimal() as follows:

ggplot(
  data = gapminder_10_rows,
  mapping = aes(
    x = year,
    y = lifeExp,
    fill = year
  )
) +
  geom_col() +
  scale_fill_viridis_c() +
  theme_minimal()

This theme starts to declutter the plot, as you can see in Figure 2-11.

Figure 2-11: The same chart with theme_minimal() added

By now, you should see why Hadley Wickham described the ggplot2 
package as using a layered grammar of graphics. It implements Wilkinson’s 
theory by creating multiple layers: first, variables to map to aesthetic prop-
erties; second, geoms to represent the data; then, the scale_ function to 
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adjust aesthetic properties; and finally, the theme_ function to set the plot’s 
overall look and feel.

You could still improve this plot in many ways, but instead let’s return 
to the drought data visualization by Scherer and Karamanis. By walking 
through their code, you’ll learn about making high-quality data visualiza-
tion with ggplot and R.

Re-creating the Drought Visualization
The drought visualization code relies on a combination of ggplot funda-
mentals and some lesser-known tweaks that make it really shine. To under-
stand how Scherer and Karamanis made their data visualization, we’ll start 
with a simplified version of their code, then build it up layer by layer, adding 
elements as we go.

First, you’ll import the data. Because it’s in JavaScript Object Notation 
(JSON) format, Scherer and Karamanis use the import() function from the 
rio package, which simplifies the process of importing JSON data:

library(rio)

dm_perc_cat_hubs_raw <- import("https:// data . rwithoutstatistics . com/
dm_export_20000101_20210909_perc_cat_hubs.json"))

JSON is a common format for data used in web applications, though it’s 
far less common in R, where it can be complicated to work with. Luckily, 
the rio package simplifies its import.

Plotting One Region and Year
Scherer and Karamanis’s final plot consists of many years and regions. To see 
how they created it, we’ll start by looking at just the Southwest region in 2003.

First, you need to create a data frame. You’ll use the filter() function 
twice: the first time to keep only data for the Southwest region, and the  
second time to keep only data from 2003. In both cases, you use the follow-
ing syntax:

filter(variable_name == value)

This tells R to keep only observations where variable_name is equal to 
some value. The code starts with the dm_perc_cat_hubs_raw data frame before 
filtering it and then saving it as a new object called southwest_2003:

southwest_2003 <- dm_perc_cat_hubs %>%
  filter(hub == "Southwest") %>%
  filter(year == 2003)
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To take a look at this object and see the variables you have to work with, 
enter southwest_2003 in the console, which should return this output:

#> # A tibble: 255 × 7
#>    date hub   category   percentage  year  week max_week
#>    <date>     <fct> <fct> <dbl> <dbl> <dbl>    <dbl>
#>  1 2003-12-30 Sout... D0 0.0718  2003    52 52
#>  2 2003-12-30 Sout... D1 0.0828  2003    52 52
#>  3 2003-12-30 Sout... D2 0.2693  2003    52 52
#>  4 2003-12-30 Sout... D3 0.3108  2003    52 52
#>  5 2003-12-30 Sout... D4 0.0796  2003    52 52
#>  6 2003-12-23 Sout... D0 0.0823  2003    51 52
#>  7 2003-12-23 Sout... D1 0.1312  2003    51 52
#>  8 2003-12-23 Sout... D2 0.1886  2003    51 52
#>  9 2003-12-23 Sout... D3 0.3822  2003    51 52
#> 10 2003-12-23 Sout... D4 0.0828  2003    51 52
#> # 245 more rows

The date variable represents the start date of the week in which the 
observation took place. The hub variable is the region, and category is the 
level of drought: a value of D0 indicates the lowest level of drought, while 
D5 indicates the highest level. The percentage variable is the percentage of 
that region in that drought category, ranging from 0 to 1. The year and 
week variables are the observation year and week number (beginning with 
week 1). The max_week variable is the maximum number of weeks in a given 
year.

Now you can use this southwest_2003 object for your plot:

ggplot(
  data = southwest_2003,
  aes(
    x = week,
    y = percentage,
    fill = category
  )
) +
  geom_col()

The ggplot() function tells R to put week on the x-axis and percentage  
on the y-axis, as well as to use the category variable for the fill color. The 
geom_col() function creates a bar chart in which each bar’s fill color repre-
sents the percentage of the region at each drought level for that particular 
week, as shown in Figure 2-12.
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Figure 2-12: One year (2003) and region (Southwest) 
of the drought visualization

The colors, which include bright pinks, blues, greens, and reds, don’t 
match the final version of the plot, but you can start to see the outlines of 
Scherer and Karamanis’s data visualization.

Changing Aesthetic Properties
Scherer and Karamanis next selected different fill colors for their bars. To 
do so, they used the scale_fill_viridis_d() function. The d here means that 
the data to which the fill scale is being applied has discrete categories (D0, 
D1, D2, D3, D4, and D5):

ggplot(
  data = southwest_2003,
  aes(
    x = week,
    y = percentage,
    fill = category
  )
) +
  geom_col() +
  scale_fill_viridis_d(
    option = "rocket",
    direction = -1
  )

They used the argument option = "rocket" to select the rocket palette, 
whose colors range from cream to nearly black. You could use several other 
palettes within the scale_fill_viridis_d() function; see them at https:// 
sjmgarnier . github . io / viridisLite / reference / viridis . html.

Then they used the direction = -1 argument to reverse the order of fill 
colors so that darker colors mean higher drought conditions.
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Scherer and Karamanis also tweaked the appearance of the x- and 
y- axes:

ggplot(
  data = southwest_2003,
  aes(
    x = week,
    y = percentage,
    fill = category
  )) +
  geom_col() +
  scale_fill_viridis_d(
    option = "rocket",
    direction = -1
  ) +
  scale_x_continuous(
    name = NULL,
    guide = "none"
  ) +
  scale_y_continuous(
    name = NULL,
    labels = NULL,
    position = "right"
  )

On the x-axis, they removed both the axis title (“week”) using name = NULL 
and the axis labels (the weeks numbered 0 to 50) with guide = "none". On the 
y-axis, they removed the title and text showing percentages using labels = NULL,
which functionally does the same thing as guide = "none". They also moved the
axis lines themselves to the right side using position = "right". These axis lines
are apparent only as tick marks at this point but will become more visible
later. Figure 2-13 shows the result of these tweaks.

Figure 2-13: The 2003 drought data for the Southwest 
with adjustments to the x- and y-axes
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Up to this point, we’ve focused on one of the single plots that make 
up the larger data visualization. But the final product that Scherer and 
Karamanis made is actually 176 plots visualizing 22 years and 8 regions. 
Let’s discuss the ggplot feature they used to create all of these plots.

Faceting the Plot
One of ggplot’s most useful capabilities is faceting (or, as it’s more commonly 
known in the data visualization world, small multiples). Faceting uses a vari-
able to break down a single plot into multiple plots. For example, think of a 
line chart showing life expectancy by country over time; instead of multiple 
lines on one plot, faceting would create multiple plots with one line per 
plot. To specify which variable to put in the rows and which to put in the 
columns of your faceted plot, you use the facet_grid() function, as Scherer 
and Karamanis did in their code:

dm_perc_cat_hubs %>%
  filter(hub %in% c(
    "Northwest",
    "California",
    "Southwest",
    "Northern Plains"
  )) %>%
  ggplot(aes(
    x = week,
    y = percentage,
    fill = category
  )) +
  geom_col() +
  scale_fill_viridis_d(
    option = "rocket",
    direction = -1
  ) +
  scale_x_continuous(
    name = NULL,
    guide = "none"
  ) +
  scale_y_continuous(
    name = NULL,
    labels = NULL,
    position = "right"
  ) +
  facet_grid(
    rows = vars(year),
    cols = vars(hub),
    switch = "y"
  )

Scherer and Karamanis put year in rows and hub (region) in columns. 
The switch = "y" argument moves the year label from the right side (where it 
appears by default) to the left. With this code in place, you can see the final 
plot coming together in Figure 2-14.
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Incredibly, the broad outlines of the plot took just 10 lines of code to 
create. The rest of the code falls into the category of small polishes. That’s 
not to minimize how important small polishes are (very) or the time it takes 
to create them (lots). It does show, however, that a little bit of ggplot goes a 
long way.

Adding Final Polishes
Now let’s look at a few of the small polishes that Scherer and Karamanis 
made. The first is to apply a theme. They used theme_light(), which removes 
the default gray background and changes the font to Roboto using the 
base_family argument.

The theme_light() function is what’s known as a complete theme, one that 
changes the overall look and feel of a plot. The ggplot package has multiple 
complete themes that you can use (they’re listed at https:// ggplot2 . tidyverse . org/ 
reference / index . html#themes). Individuals and organizations also make their 
own themes, as you’ll do in Chapter 3. For a discussion of which themes you 
might consider using, see my blog post at https:// rfortherestofus . com / 2019 / 08/ 
themes - to - improve - your - ggplot - figures.

Scherer and Karamanis didn’t stop by simply applying theme_light(). 
They also used the theme() function to make additional tweaks to the plot’s 
design:

dm_perc_cat_hubs %>%
  filter(hub %in% c(
    "Northwest",
    "California",
    "Southwest",
    "Northern Plains"
  )) %>%
  ggplot(aes(
    x = week,
    y = percentage,
    fill = category
  )) +
  geom_rect(
    aes(
      xmin = .5,
      xmax = max_week + .5,
      ymin = -0.005,
      ymax = 1
    ),
    fill = "#f4f4f9",
    color = NA,
    size = 0.4
  ) +
  geom_col() +
  scale_fill_viridis_d(
    option = "rocket",
    direction = -1
  ) +
  scale_x_continuous(
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    name = NULL,
    guide = "none"
  ) +
  scale_y_continuous(
    name = NULL,
    labels = NULL,
    position = "right"
  ) +
  facet_grid(
    rows = vars(year),
    cols = vars(hub),
    switch = "y"
  ) +
  theme_light(base_family = "Roboto") +
  theme(
    axis.title = element_text(
      size = 14,
      color = "black"
    ),
    axis.text = element_text(
      family = "Roboto Mono",
      size = 11
    ),
  1 axis.line.x = element_blank(),
    axis.line.y = element_line(
      color = "black",
      size = .2
    ),
    axis.ticks.y = element_line(
      color = "black",
      size = .2
    ),
    axis.ticks.length.y = unit(2, "mm"),
  2 legend.position = "top",
    legend.title = element_text(
      color = "#2DAADA",
      face = "bold"
    ),
    legend.text = element_text(color = "#2DAADA"),
    strip.text.x = element_text(
      hjust = .5,
      face = "plain",
      color = "black",
      margin = margin(t = 20, b = 5)
    ),
    strip.text.y.left = element_text(
    3 angle = 0,
      vjust = .5,
      face = "plain",
      color = "black"
    ),
    strip.background = element_rect(
      fill = "transparent",
      color = "transparent"
    ),
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  4 panel.grid.minor = element_blank(),
    panel.grid.major = element_blank(),
    panel.spacing.x = unit(0.3, "lines"),
    panel.spacing.y = unit(0.25, "lines"),
  5 panel.background = element_rect(
      fill = "transparent",
      color = "transparent"
    ),
    panel.border = element_rect(
      color = "transparent",
      size = 0
    ),
    plot.background = element_rect(
      fill = "transparent",
      color = "transparent",
      size = .4
    ),
    plot.margin = margin(rep(18, 4))
  )
  )

The code in the theme() function does many different things, but let’s 
look at a few of the most important. First, it moves the legend from the right 
side (the default) to the top of the plot 2. Then, the angle = 0 argument 
rotates the year text in the columns from vertical to horizontal 3. Without 
this argument, the years would be much less legible.

The theme() function also makes the distinctive axis lines and ticks that 
appear on the right side of the final plot 1. Calling element_blank() removes 
all grid lines 4. Finally, this code removes the borders and gives each indi-
vidual plot a transparent background 5.

You might be thinking, Wait. Didn’t the individual plots have a gray back-
ground behind them? Yes, dear reader, they did. Scherer and Karamanis made 
these with a separate geom, geom_rect():

geom_rect(
  aes(
    xmin = .5,
    xmax = max_week + .5,
    ymin = -0.005,
    ymax = 1
  ),
  fill = "#f4f4f9",
  color = NA,
  size = 0.4
)

They also set some additional aesthetic properties specific to this 
geom—xmin, xmax, ymin, and ymax—which determine the boundaries of the 
rectangle it produces. The result is a gray background behind each small 
multiple, as shown in Figure 2-15.
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Figure 2-15:  The faceted version of the drought visualization with a gray background 
behind each small multiple
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Finally, Scherer and Karamanis made some tweaks to the legend. 
Previously you saw a simplified version of the scale_fill_viridis_d() func-
tion. Here’s a more complete version:

scale_fill_viridis_d(
  option = "rocket",
  direction = -1,
  name = "Category:",
  labels = c(
    "Abnormally Dry",
    "Moderate Drought",
    "Severe Drought",
    "Extreme Drought",
    "Exceptional Drought"
  )
)

The name argument sets the legend title, and the labels argument speci-
fies the labels that show up in the legend. Figure 2-16 shows the result of 
these changes.

Figure 2-16: The drought visualization with changes to the legend text

Rather than D0, D1, D2, D3, and D4, the legend text now reads 
Abnormally Dry, Moderate Drought, Severe Drought, Extreme Drought, 
and Exceptional Drought—much more user-friendly categories.

The Complete Visualization Code
While I’ve shown you a nearly complete version of the code that Scherer 
and Karamanis wrote, I made some small changes to make it easier to 
understand. If you’re curious, the full code is here:

ggplot(dm_perc_cat_hubs, aes(week, percentage)) +
  geom_rect(
    aes(
      xmin = .5,
      xmax = max_week + .5,
      ymin = -0.005,
      ymax = 1
    ),
    fill = "#f4f4f9",
    color = NA,
    size = 0.4,
    show.legend = FALSE
  ) +
  geom_col(
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    aes(
      fill = category,
      fill = after_scale(addmix(

darken(
fill,
.05,
space = "HLS"

),
"#d8005a",
.15

      )),
      color = after_scale(darken(

fill,
.2,
space = "HLS"

      ))
    ),
    width = .9,
    size = 0.12
  ) +
  facet_grid(
    rows = vars(year),
    cols = vars(hub),
    switch = "y"
  ) +
  coord_cartesian(clip = "off") +
  scale_x_continuous(
    expand = c(.02, .02),
    guide = "none",
    name = NULL
  ) +
  scale_y_continuous(
    expand = c(0, 0),
    position = "right",
    labels = NULL,
    name = NULL
  ) +
  scale_fill_viridis_d(
    option = "rocket",
    name = "Category:",
    direction = -1,
    begin = .17,
    end = .97,
    labels = c(
      "Abnormally Dry",
      "Moderate Drought",
      "Severe Drought",
      "Extreme Drought",
      "Exceptional Drought"
    )
  ) +
  guides(fill = guide_legend(
    nrow = 2,
    override.aes = list(size = 1)
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  )) +
  theme_light(
    base_size = 18,
    base_family = "Roboto"
  ) +
  theme(
    axis.title = element_text(
      size = 14,
      color = "black"
    ),
    axis.text = element_text(
      family = "Roboto Mono",
      size = 11
    ),
    axis.line.x = element_blank(),
    axis.line.y = element_line(
      color = "black",
      size = .2
    ),
    axis.ticks.y = element_line(
      color = "black",
      size = .2
    ),
    axis.ticks.length.y = unit(2, "mm"),
    legend.position = "top",
    legend.title = element_text(
      color = "#2DAADA",
      size = 18,
      face = "bold"
    ),
    legend.text = element_text(
      color = "#2DAADA",
      size = 16
    ),
    strip.text.x = element_text(
      size = 16,
      hjust = .5,
      face = "plain",
      color = "black",
      margin = margin(t = 20, b = 5)
    ),
    strip.text.y.left = element_text(
      size = 18,
      angle = 0,
      vjust = .5,
      face = "plain",
      color = "black"
    ),
    strip.background = element_rect(
      fill = "transparent",
      color = "transparent"
    ),
    panel.grid.minor = element_blank(),
    panel.grid.major = element_blank(),
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    panel.spacing.x = unit(0.3, "lines"),
    panel.spacing.y = unit(0.25, "lines"),
    panel.background = element_rect(
      fill = "transparent",
      color = "transparent"
    ),
    panel.border = element_rect(
      color = "transparent",
      size = 0
    ),
    plot.background = element_rect(
      fill = "transparent",
      color = "transparent",
      size = .4
    ),
    plot.margin = margin(rep(18, 4))
  )

There are a few additional tweaks to color and spacing, but most of the 
code reflects what you’ve seen so far.

Summary
You may be thinking that ggplot is the solution to all of your data visualiza-
tion problems. And yes, you have a new hammer, but not everything is a nail. 
If you look at the version of the data visualization that appeared in Scientific 
American in November 2021, you’ll see that some of its annotations aren’t vis-
ible in our re-creation. That’s because they were added in post-production. 
While you could have found ways to create them in ggplot, it’s often not the 
best use of your time. Get yourself 90 percent of the way there with ggplot 
and then use Illustrator, Figma, or a similar tool to finish your work.

Even so, ggplot is a very powerful hammer, used to make plots that 
you’ve seen in the New York Times, FiveThirtyEight, the BBC, and other well-
known news outlets. Although it’s not the only tool that can generate high-
quality data visualizations, it makes the process straightforward. The graph 
by Scherer and Karamanis shows this in several ways:

It strips away extraneous elements, such as grid lines, to keep the 
focus on the data itself. Complete themes such as theme_light() and 
the theme() function allowed Scherer and Karamanis to create a declut-
tered visualization that communicates effectively.

It uses well-chosen colors. The scale_fill_viridis_d() function 
allowed them to create a color scheme that demonstrates differences 
between groups, is colorblind-friendly, and shows up well when printed 
in grayscale.

It uses faceting to break down data from two decades and eight 
regions into a set of graphs that come together to create a single 
plot. With a single call to the facet_grid() function, Scherer and 
Karamanis created over 100 small multiples that the tool automatically 
combined into a single plot.
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Learning to create data visualizations in ggplot involves a significant 
time investment. But the long-term payoff is even greater. Once you learn 
how ggplot works, you can look at others’ code and learn how to improve 
your own. By contrast, when you make a data visualization in Excel, the 
series of point-and-click steps disappears into the ether. To re-create a visu-
alization you made last week, you’ll need to remember the exact steps you 
used, and to make someone else’s data visualization, you’ll need them to 
write up their process for you.

Because code-based data visualization tools allow you to keep a record 
of the steps you made, you don’t have to be the most talented designer to 
make high-quality data visualizations with ggplot. You can study others’ 
code, adapt it to your own needs, and create your own data visualization 
that not only is beautiful but also communicates effectively.
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Princeton University Press, 2018), https:// socviz . co / .

Cédric Scherer, Graphic Design with ggplot2 by Cédric Scherer (Boca 
Raton, FL: CRC Press, forthcoming).

Hadley Wickham, Danielle Navarro, and Thomas Lin Pedersen, ggplot2: 
Elegant Graphics for Data Analysis, 3rd ed. (New York: Springer, forthcom-
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