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L O W - L E V E L  C O N T R O L  

S T R U C T U R E S

This chapter discusses “pure” assembly 
language control statements. You’ll need 

to master these low-level control structures 
before you can claim to be an assembly language 

programmer. By the time you finish this chapter, you 
should be able to stop using HLA’s high-level control 
statements and synthesize them using low-level 80x86 
machine instructions.

The last section of this chapter discusses hybrid control structures that 
combine the features of HLA’s high-level control statements with the 80x86 
control instructions. These combine the power and efficiency of the low-
level control statements with the readability of high-level control statements. 
Advanced assembly programmers may want to use these hybrid statements 
to improve their programs’ readability without sacrificing efficiency.
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7.1 Low-Level Control Structures
Until now, most of the control structures you’ve seen and have used in your 
programs are similar to the control structures found in high-level languages 
like Pascal, C++, and Ada. While these control structures make learning 
assembly language easy, they are not true assembly language statements. 
Instead, the HLA compiler translates these control structures into a sequence 
of “pure” machine instructions that achieve the same result as the high-level 
control structures. This text uses the high-level control structures to allow you 
to learn assembly language without having to learn everything all at once. 
Now, however, it’s time to put aside these high-level control structures and 
learn how to write your programs in real assembly language, using low-level 
control structures.

7.2 Statement Labels
Assembly language low-level control structures make extensive use of labels
within your source code. A low-level control structure usually transfers con-
trol between two points in your program. You typically specify the destination 
of such a transfer using a statement label. A statement label consists of a valid 
(unique) HLA identifier and a colon. For example:

aLabel:

Of course, as for procedure, variable, and constant identifiers, you should 
attempt to choose descriptive and meaningful names for your labels. The 
example identifier above, aLabel, is hardly descriptive or meaningful.

Statement labels have one important attribute that differentiates them 
from most other identifiers in HLA: You don’t have to declare a label before 
you use it. This is important, because low-level control structures must often 
transfer control to some point later in the code; therefore the label may not 
be defined by the time you reference it.

You can do three things with labels: transfer control to a label via a jump 
(goto) instruction, call a label via the call instruction, and take the address of 
a label. There is very little else you can directly do with a label (of course, 
there is very little else you would want to do with a label, so this is hardly a 
restriction). The program in Listing 7-1 demonstrates two ways to take the 
address of a label in your program and print out the address (using the lea
instruction and using the & address-of operator):

program labelDemo;

#include( "stdlib.hhf" );

    

begin labelDemo;

    lbl1:

    

        lea( ebx, lbl1 );

        mov( &lbl2, eax );

        stdout.put( "&lbl1=$", ebx, " &lbl2=", eax, nl );
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     lbl2:

        

end labelDemo;

Listing 7-1: Displaying the address of statement labels in a program

HLA also allows you to initialize double-word variables with the addresses 
of statement labels. However, there are some restrictions on labels that appear 
in the initialization portions of variable declarations. The most important 
restriction is that you must define the statement label at the same lexical level 
as the variable declaration. That is, if you reference a statement label in the 
initializer of a variable declaration appearing in the main program, the state-
ment label must also be in the main program. Conversely, if you take the 
address of a statement label in a local variable declaration, that symbol must 
appear in the same procedure as the local variable. Listing 7-2 demonstrates 
the use of statement labels in variable initialization:

program labelArrays;

#include( "stdlib.hhf" );

    

static

    labels:dword[2] := [ &lbl1, &lbl2 ];

    

    procedure hasLabels;

    static

        stmtLbls: dword[2] := [ &label1, &label2 ];

    begin hasLabels;

    

        label1:

            

            stdout.put

            ( 

                "stmtLbls[0]= $", stmtLbls[0], nl,

                "stmtLbls[1]= $", stmtLbls[4], nl

            );

            

        label2:

        

    end hasLabels;

        

begin labelArrays;

    hasLabels();

    lbl1:

    

        stdout.put( "labels[0]= $", labels[0], " labels[1]=", labels[4], nl );

    

    lbl2:

        

end labelArrays;

Listing 7-2: Initializing dword variables with the address of statement labels
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Once in a while, you’ll need to refer to a label that is not within the current 
procedure. The need for this is sufficiently rare that this text will not describe 
all the details. See the HLA documentation for more details should you ever 
need to do this.

7.3 Unconditional Transfer of Control (jmp)

The jmp ( jump) instruction unconditionally transfers control to another 
point in the program. There are three forms of this instruction: a direct jump 
and two indirect jumps. These instructions take the following forms:

     jmp label;

     jmp( reg32 );

     jmp( mem32 );

The first instruction is a direct jump above. For direct jumps you normally 
specify the target address using a statement label. The label appears either on 
the same line as an executable machine instruction or by itself on a line pre-
ceding an executable machine instruction. The direct jump is completely 
equivalent to a goto statement in a high-level language.1

Here’s an example:

          << statements >>

          jmp laterInPgm;

               .

               .

               .

laterInPgm:

          << statements >>

The second form of the jmp instruction given earlier—jmp( reg32 );—is a 
register indirect jump instruction. This instruction transfers control to the 
instruction whose address appears in the specified 32-bit general-purpose 
register. To use this form of the jmp instruction, you must load a 32-bit register 
with the address of some machine instruction prior to the execution of the 
jmp. You could use this instruction to implement a state machine by loading a 
register with the address of some label at various points throughout your 
program and then use a single indirect jump at a common point to transfer 
control to one of those labels. The short sample program in Listing 7-3 dem-
onstrates how you could use the jmp in this manner.

program regIndJmp;

#include( "stdlib.hhf" );

    

static

    i:int32;

    

1 Unlike high-level languages, where your instructors usually forbid you to use goto statements, 
you will find that the use of the jmp instruction in assembly language is essential.

The Art of Assembly Language, 2nd Edition
(C) 2010 by Randall Hyde



Low-Level  Cont rol  S t ruc tures 417

begin regIndJmp;

    // Read an integer from the user and set ebx to

    // denote the success or failure of the input.

    

    try

    

        stdout.put( "Enter an integer value between 1 and 10: " );

        stdin.get( i );

        mov( i, eax );

        if( eax in 1..10 ) then

        

            mov( &GoodInput, ebx );

            

        else

        

            mov( &valRange, ebx );

            

        endif;

        

      exception( ex.ConversionError )

      

        mov( &convError, ebx );

        

      exception( ex.ValueOutOfRange )

      

        mov( &valRange, ebx );

        

    endtry;

    

    // Okay, transfer control to the appropriate

    // section of the program that deals with

    // the input.

    

    jmp( ebx );

    

    valRange:

        stdout.put( "You entered a value outside the range 1..10" nl );

        jmp Done;

        

    convError:

        stdout.put( "Your input contained illegal characters" nl );

        jmp Done;

        

    GoodInput:

        stdout.put( "You entered the value ", i, nl );

        

    Done:

    

        

end regIndJmp;

Listing 7-3: Using register-indirect jmp instructions
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The third form of the jmp instruction given earlier is a memory-indirect 
jmp. This form of the jmp instruction fetches the double-word value from the 
memory location and jumps to that address. This is similar to the register-
indirect jmp except the address appears in a memory location rather than in a 
register. Listing 7-4 demonstrates a rather trivial use of this form of the jmp
instruction.

program memIndJmp;

#include( "stdlib.hhf" );

    

static

    LabelPtr:dword := &stmtLabel;

    

begin memIndJmp;

    stdout.put( "Before the JMP instruction" nl );

    jmp( LabelPtr );

    

        stdout.put( "This should not execute" nl );

    

    stmtLabel:

        

        stdout.put( "After the LabelPtr label in the program" nl );

        

end memIndJmp;

Listing 7-4: Using memory-indirect jmp instructions

WARNING Unlike the HLA high-level control structures, the low-level jmp instructions can cause 
you a lot of trouble. In particular, if you do not initialize a register with the address of 
a valid instruction and you jump indirectly through that register, the results are unde-
fined (though this will usually cause a general protection fault). Similarly, if you do 
not initialize a double-word variable with the address of a legal instruction, jumping 
indirectly through that memory location will probably crash your program.

7.4 The Conditional Jump Instructions

Although the jmp instruction provides transfer of control, it is inconvenient to 
use when making decisions such as those you’ll need to implement statements 
like if and while. The 80x86’s conditional jump instructions handle this task.

The conditional jumps test one or more CPU flags to see if they match 
some particular pattern. If the flag settings match the condition, the condi-
tional jump instruction transfers control to the target location. If the match 
fails, the CPU ignores the conditional jump and execution continues with the 
instruction following the conditional jump. Some conditional jump instruc-
tions simply test the setting of the sign, carry, overflow, and zero flags. For 
example, after the execution of a shl instruction, you could test the carry flag 
to determine if the shl shifted a 1 out of the H.O. bit of its operand. Likewise, 
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you could test the zero flag after a test instruction to check if the result was 0. 
Most of the time, however, you will probably execute a conditional jump after 
a cmp instruction. The cmp instruction sets the flags so that you can test for less 
than, greater than, equality, and so on.

The conditional jmp instructions take the following form:

jcc label;

The cc in jcc indicates that you must substitute some character sequence 
that specifies the type of condition to test. These are the same characters the 
setcc instruction uses. For example, js stands for jump if the sign flag is set. A 
typical js instruction is:

js ValueIsNegative;

In this example, the js instruction transfers control to the ValueIsNegative
label if the sign flag is currently set; control falls through to the next instruc-
tion following the js instruction if the sign flag is clear.

Unlike the unconditional jmp instruction, the conditional jump instruc-
tions do not provide an indirect form. They only allow a branch to a statement 
label in your program.

NOTE Intel’s documentation defines various synonyms or instruction aliases for many conditional 
jump instructions. 

 Tables 7-1, 7-2, and 7-3 list all the aliases for a particular instruction. 
These tables also list the opposite branches. You’ll soon see the purpose of 
the opposite branches.  

Table 7-1: jcc Instructions That Test Flags

Instruction Description Condition Aliases Opposite

jc Jump if carry Carry = 1 jb, jnae jnc

jnc Jump if no carry Carry = 0 jnb, jae jc

jz Jump if zero Zero = 1 je jnz

jnz Jump if not zero Zero = 0 jne jz

js Jump if sign Sign = 1 jns

jns Jump if no sign Sign = 0 js

jo Jump if overflow Overflow = 1 jno

jno Jump if no overflow Overflow = 0 jo

jp Jump if parity Parity = 1 jpe jnp

jpe Jump if parity even Parity = 1 jp jpo

jnp Jump if no parity Parity = 0 jpo jp

jpo Jump if parity odd Parity = 0 jnp jpe
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One brief comment about the Opposite column is in order. In many 
instances you will need to be able to generate the opposite of a specific branch 
instruction (examples appear later in this section). With only two exceptions, 
a very simple rule completely describes how to generate an opposite branch:

If the second letter of the jcc instruction is not an n, insert an n after the j.
For example, je becomes jne and jl becomes jnl.

If the second letter of the jcc instruction is an n, then remove that n from 
the instruction. For example, jng becomes jg and jne becomes je.

The two exceptions to this rule are jpe ( jump if parity is even) and jpo
( jump if parity is odd). These exceptions cause few problems because (1) you’ll 
hardly ever need to test the parity flag, and (2) you can use the aliases jp and 
jnp as synonyms for jpe and jpo. The “N/No N” rule applies to jp and jnp.

Though you know that jge is the opposite of jl, get in the habit of using 
jnl rather than jge as the opposite jump instruction for jl. It’s too easy in an 

Table 7-2: jcc Instructions for Unsigned Comparisons

Instruction Description Condition Aliases Opposite

ja Jump if above (>) Carry = 0, Zero = 0 jnbe jna

jnbe Jump if not below or equal (not <=) Carry = 0, Zero = 0 ja jbe

jae Jump if above or equal (>=) Carry = 0 jnc, jnb jnae

jnb Jump if not below (not <) Carry = 0 jnc, jae jb

jb Jump if below (<) Carry = 1 jc, jnae jnb

jnae Jump if not above or equal (not >=) Carry = 1 jc, jb jae

jbe Jump if below or equal (<=) Carry = 1 or Zero = 1 jna jnbe

jna Jump if not above 
(not >)

Carry = 1 or Zero = 1 jbe ja

je Jump if equal (=) Zero = 1 jz jne

jne Jump if not equal (¦) Zero = 0 jnz je

Table 7-3: jcc Instructions for Signed Comparisons 

Instruction Description Condition Aliases Opposite

jg Jump if greater (>) Sign = Overflow or Zero = 0 jnle jng

jnle Jump if not less than or equal (not <=) Sign = Overflow or Zero = 0 jg jle

jge Jump if greater than or equal (>=) Sign = Overflow jnl jge

jnl Jump if not less than (not <) Sign = Overflow jge jl

jl Jump if less than (<) Sign <> Overflow jnge jnl

jnge Jump if not greater or equal (not >=) Sign <> Overflow jl jge

jle Jump if less than or equal (<=) Sign <> Overflow or Zero = 1 jng jnle

jng Jump if not greater than (not >) Sign <> Overflow or Zero = 1 jle jg

je Jump if equal (=) Zero = 1 jz jne

jne Jump if not equal (¦) Zero = 0 jnz je
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important situation to start thinking “greater is the opposite of less” and substi-
tute jg instead. You can avoid this confusion by always using the “N/No N” rule.

The 80x86 conditional jump instructions give you the ability to split pro-
gram flow into one of two paths depending on some condition. Suppose you 
want to increment the AX register if BX is equal to CX. You can accomplish 
this with the following code:

          cmp( bx, cx );

          jne SkipStmts;

          inc( ax );

SkipStmts:

The trick is to use the opposite branch to skip over the instructions you want 
to execute if the condition is true. Always use the “opposite branch (N/No N)” 
rule given earlier to select the opposite branch.

You can also use the conditional jump instructions to synthesize loops. 
For example, the following code sequence reads a sequence of characters 
from the user and stores each character in successive elements of an array 
until the user presses the ENTER key (carriage return):

          mov( 0, edi );

RdLnLoop:

          stdin.getc();              // Read a character into the al register.

          mov( al, Input[ edi ] );   // Store away the character.

          inc( edi );                // Move on to the next character.

          cmp( al, stdio.cr );       // See if the user pressed Enter.

          jne RdLnLoop;

Like the setcc instructions, the conditional jump instructions come in 
two basic categories: those that test specific processor flags (e.g., jz, jc, jno)
and those that test some condition (less than, greater than, etc.). When test-
ing a condition, the conditional jump instructions almost always follow a cmp
instruction. The cmp instruction sets the flags so that you can use a ja, jae, jb,
jbe, je, or jne instruction to test for unsigned less than, less than or equal, 
equal, unequal, greater than, or greater than or equal. Simultaneously, the 
cmp instruction sets the flags so that you can also do a signed comparison using 
the jl, jle, je, jne, jg, and jge instructions.

The conditional jump instructions only test the 80x86 flags; they do not 
affect any of them.

7.5 “Medium-Level” Control Structures: jt and jf

HLA provides two special conditional jump instructions: jt ( jump if true) 
and jf ( jump if false). These instructions take the following syntax:

jt( boolean_expression ) target_label;

jf( boolean_expression ) target_label;
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The boolean_expression is the standard HLA boolean expression allowed 
by if..endif and other HLA high-level language statements. These instructions 
evaluate the boolean expression and jump to the specified label if the expres-
sion evaluates true (jt) or false (jf).

These are not real 80x86 instructions. HLA compiles them into a sequence 
of one or more 80x86 machine instructions that achieve the same result. In 
general, you should not use these two instructions in your main code; they 
offer few benefits over using an if..endif statement and they are no more 
readable than the pure assembly language sequences they compile into. HLA 
provides these “medium-level” instructions so that you may create your own 
high-level control structures using macros (see Chapter 9 and the HLA refer-
ence manual for more details).

7.6 Implementing Common Control Structures in 
Assembly Language

Because a primary goal of this chapter is to teach you how to use the low-level 
machine instructions to implement decisions, loops, and other control con-
structs, it would be wise to show you how to implement these high-level 
statements using pure assembly language. The following sections provide 
this information.

7.7 Introduction to Decisions

In its most basic form, a decision is some sort of branch within the code that 
switches between two possible execution paths based on some condition. 
Normally (though not always), conditional instruction sequences are imple-
mented with the conditional jump instructions. Conditional instructions 
correspond to the if..then..endif statement in HLA:

      if( expression ) then

          << statements >>

     endif;

Assembly language, as usual, offers much more flexibility when dealing 
with conditional statements. Consider the following C/C++ statement:

      if( (( x < y ) && ( z > t )) || ( a != b ) ) 

          stmt1;

A “brute force” approach to converting this statement into assembly 
language might produce the following:

          mov( x, eax );

          cmp( eax, y );

          setl( bl );       // Store x<y in bl.

          mov( z, eax );

          cmp( eax, t );
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          setg( bh );       // Store z>t in bh.

          and( bh, bl );    // Put (x<y) && (z>t) into bl.

          mov( a, eax );

          cmp( eax, b );

          setne( bh );      // Store a != b into bh.

          or( bh, bl );     // Put (x<y) && (z>t) || (a!=b) into bl

          je SkipStmt1;     // Branch if result is false.

     << Code for Stmt1 goes here. >>

SkipStmt1:

As you can see, it takes a considerable number of conditional statements 
just to process the expression in the example above. This roughly corresponds 
to the (equivalent) C/C++ statements:

          bl = x < y;

          bh = z > t;

          bl = bl && bh;

          bh = a != b;

          bl = bl || bh;

          if( bl )

               << Stmt1 >>;

Now compare this with the following “improved” code:

          mov( a, eax );

          cmp( eax, b );

          jne DoStmt;

          mov( x, eax );

          cmp( eax, y );

          jnl SkipStmt;

          mov( z, eax );

          cmp( eax, t );

          jng SkipStmt;

DoStmt:

          << Place code for Stmt1 here. >>

SkipStmt:

Two things should be apparent from the code sequences above: First, a 
single conditional statement in C/C++ (or some other HLL) may require 
several conditional jumps in assembly language; second, organization of com-
plex expressions in a conditional sequence can affect the efficiency of the 
code. Therefore, you should exercise care when dealing with conditional 
sequences in assembly language.

Conditional statements may be broken down into three basic categories: 
if statements, switch/case statements, and indirect jumps. The following sec-
tions describe these program structures, how to use them, and how to write 
them in assembly language.
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7.7.1 if..then..else Sequences   

The most common conditional statements are the if..then..endif and 
if..then..else..endif statements. These two statements take the form shown 
in Figure 7-1.

Figure 7-1: if..then..else..endif and if..then..endif statement flow

The if..then..endif statement is just a special case of the if..then..
else..endif statement (with an empty else block). Therefore, we’ll consider 
only the more general if..then..else..endif form. The basic implementation 
of an if..then..else..endif statement in 80x86 assembly language looks some-
thing like this:

<< Sequence of statements to test some condition >>

jcc ElseCode; 

<< Sequence of statements corresponding to the THEN block >>

          jmp EndOfIf;

ElseCode: 

<< Sequence of statements corresponding to the ELSE block >> 

EndOfIf:

Note that jcc represents some conditional jump instruction. For example, to 
convert the C/C++ statement

     if( a == b ) 

          c = d;

     else 

          b = b + 1;

if..then..else..endif if..then..endif

Test for some condition Test for some condition

Execute this block
of statements if the
condition is true. Execute this block

of statements if the
condition is true.

Execute this block
of statements if the
condition is false.

Continue execution
down here after the 
completion of the 
then or else blocks.

Continue execution
down here after the 
completion of the then
block or if skipping
the then block.
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to assembly language, you could use the following 80x86 code:

          mov( a, eax );

          cmp( eax, b );

          jne ElsePart;

          mov( d, c );

          jmp EndOfIf;

ElseBlk:

          inc( b );

EndOfIf: 

For simple expressions like ( a == b ) generating the proper code for an 
if..then..else..endif statement is almost trivial. Should the expression 
become more complex, the code complexity increases as well. Consider the 
following C/C++ if statement presented earlier:

     if( (( x > y ) && ( z < t )) || ( a != b ) )

          c = d;

When processing complex if statements such as this one, you’ll find the 
conversion task easier if you break the if statement into a sequence of three 
different if statements as follows:

     if( a != b ) c = d;

     else if( x > y)

          if( z < t )

               c = d;

This conversion comes from the following C/C++ equivalents:

if( expr1 && expr2 ) stmt;

is equivalent to

if( expr1 ) if( expr2 ) stmt;

and

if( expr1 || expr2 ) stmt;

is equivalent to

if( expr1 ) stmt;

else if( expr2 ) stmt;
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In assembly language, the former if statement becomes

// if( (( x > y ) && ( z < t )) || ( a != b ) )

//      c = d;

          mov( a, eax );

          cmp( eax, b );

          jne DoIF;

          mov( x, eax );

          cmp( eax, y );

          jng EndOfIF;

          mov( z, eax );

          cmp( eax, t );

          jnl EndOfIf;

DoIf:

          mov( d, eax );

          mov( eax, c );

EndOfIf:

As you can see, testing a condition can easily become more complex than 
the statements appearing in the else and then blocks. Although it seems some-
what paradoxical that it may take more effort to test a condition than to act on 
the results of that condition, it happens all the time. Therefore, you should be 
prepared to accept this.

Probably the biggest problem with complex conditional statements in 
assembly language is trying to figure out what you’ve done after you’ve written 
the code. A big advantage high-level languages offer over assembly language 
is that expressions are much easier to read and comprehend. The high-level 
version is (more) self-documenting, whereas assembly language tends to hide 
the true nature of the code. Therefore, well-written comments are an essential 
ingredient to assembly language implementations of if..then..else..endif
statements. An elegant implementation of the example above is as follows:

// if ((x > y) && (z < t)) or (a != b)  c = d;

// Implemented as: 

// if (a != b) then goto DoIf; 

          mov( a, eax );

          cmp( eax, b );

          jne DoIf;

// if not (x > t) then goto EndOfIf;

          mov( x, eax );

          cmp( eax, y );

          jng EndOfIf;

// if not (z < t) then goto EndOfIf;
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          mov( z, eax );

          cmp( eax, t );

          jnl EndOfIf;

// then block: 

DoIf:     

          mov( d, eax );

          mov( eax, c );

// End of if statement 

EndOfIf: 

Admittedly, this appears to be going overboard for such a simple example. 
The following would probably suffice:

// if ( (( x > y ) && ( z < t )) || ( a != b ) )  c = d; 

// Test the boolean expression: 

          mov( a, eax );

          cmp( eax, b );

          jne DoIf;

          mov( x, eax );

          cmp( eax, y );

          jng EndOfIf;

          mov( z, eax );

          cmp( eax, t );

          jnl EndOfIf;

// then block: 

DoIf:

          mov( d, eax );

          mov( eax, c );

// End of if statement 

EndOfIf: 

However, as your if statements become complex, the density (and quality) 
of your comments become more and more important.

7.7.2 Translating HLA if Statements into Pure Assembly Language

Translating HLA if statements into pure assembly language is very easy. The 
boolean expressions that the HLA if statement supports were specifically 
chosen to expand into a few simple machine instructions. The following para-
graphs discuss the conversion of each supported boolean expression into pure 
machine code.
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if( flag_specification ) then stmts endif;

This form is, perhaps, the easiest HLA if statement to convert. To execute the 
code immediately following the then keyword if a particular flag is set (or 
clear), all you need do is skip over the code if the flag is clear (set). This 
requires only a single conditional jump instruction for implementation, as 
the following examples demonstrate:

// if( @c ) then inc( eax );  endif;

          jnc SkipTheInc;

               inc( eax );

          SkipTheInc:

// if( @ns ) then neg( eax ); endif;

          js SkipTheNeg;

               neg( eax );

          SkipTheNeg:

if( register ) then stmts endif;

This form uses the test instruction to check the specified register for 0. If the 
register contains 0 (false), then the program jumps around the statements 
after the then clause with a jz instruction. Converting this statement to assembly 
language requires a test instruction and a jz instruction, as the following 
examples demonstrate:

// if( eax ) then mov( false, eax );  endif;

          test( eax, eax );

          jz DontSetFalse;

               mov( false, eax );

          DontSetFalse:

// if( al ) then mov( bl, cl );  endif;

          test( al, al );

          jz noMove;

               mov( bl, cl );

          noMove:
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if( !register ) then stmts endif;

This form of the if statement uses the test instruction to check the specified 
register to see if it is 0. If the register is not 0 (true), then the program jumps 
around the statements after the then clause with a jnz instruction. Converting 
this statement to assembly language requires a test instruction and a jnz
instruction in a manner identical to the previous examples.

if( boolean_variable ) then stmts endif;

This form of the if statement compares the boolean variable against 0 (false) 
and branches around the statements if the variable contains false. HLA imple-
ments this statement by using the cmp instruction to compare the boolean 
variable to 0, and then it uses a jz (je) instruction to jump around the statements 
if the variable is false. The following example demonstrates the conversion:

// if( bool ) then mov( 0, al );  endif;

          cmp( bool, false );

          je SkipZeroAL;

               mov( 0, al );

          SkipZeroAL:

if( !boolean_variable ) then stmts endif;

This form of the if statement compares the boolean variable against 0 (false) 
and branches around the statements if the variable contains true (the oppo-
site condition of the previous example). HLA implements this statement by 
using the cmp instruction to compare the boolean variable to 0 and then it uses 
a jnz (jne) instruction to jump around the statements if the variable contains 
true. The following example demonstrates the conversion:

// if( !bool ) then mov( 0, al );  endif;

          cmp( bool, false );

          jne SkipZeroAL;

               mov( 0, al );

          SkipZeroAL:

if( mem_reg relop mem_reg_const ) then stmts endif;

HLA translates this form of the if statement into a cmp instruction and a condi-
tional jump that skips over the statements on the opposite condition specified 
by the relop operator. Table 7-4 lists the correspondence between operators 
and conditional jump instructions.
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Here are a few examples of if statements translated into pure assembly 
language that use expressions involving relational operators:

// if( al == ch ) then inc( cl ); endif;

          cmp( al, ch );

          jne SkipIncCL;

               inc( cl );

          SkipIncCL:

// if( ch >= 'a' ) then and( $5f, ch ); endif;

          cmp( ch, 'a' );

          jnae NotLowerCase

               and( $5f, ch );

          NotLowerCase:

// if( (type int32 eax ) < -5 ) then mov( -5, eax );  endif;

          cmp( eax, -5 );

          jnl DontClipEAX;

               mov( -5, eax );

          DontClipEAX:

// if( si <> di ) then inc( si );  endif;

          cmp( si, di );

          je DontIncSI;

               inc( si );

          DontIncSI:

Table 7-4: if Statement Conditional Jump Instructions

Relational 
operation

Conditional jump instruction
if both operands are unsigned

Conditional jump instruction
if either operand is signed

= or == jne jne

<> or != je je

< jnb jnl

<= jnbe jnle

> jna jng

>= jnae jnge
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if( reg/mem in LowConst..HiConst ) then stmts endif;

HLA translates this if statement into a pair of cmp instructions and a pair of 
conditional jump instructions. It compares the register or memory location 
against the lower-valued constant and jumps if less than (signed) or below 
(unsigned) past the statements after the then clause. If the register or memory 
location’s value is greater than or equal to LowConst, the code falls through to 
the second cmp and conditional jump pair that compares the register or mem-
ory location against the higher constant. If the value is greater than (above) 
this constant, a conditional jump instruction skips the statements in the then
clause.

Here’s an example:

// if( eax in 1000..125_000 ) then sub( 1000, eax );  endif;

          cmp( eax, 1000 );

          jb DontSub1000;

          cmp( eax, 125_000 );

          ja DontSub1000;

               sub( 1000, eax );

          DontSub1000:

// if( i32 in -5..5 ) then add( 5, i32 ); endif;

          cmp( i32, -5 );

          jl NoAdd5;

          cmp( i32, 5 );

          jg NoAdd5;

               add(5, i32 );

          NoAdd5:

if( reg/mem not in LowConst..HiConst ) then stmts endif;

This form of the HLA if statement tests a register or memory location to see 
if its value is outside a specified range. The implementation is very similar to 
the previous code except you branch to the then clause if the value is less than 
the LowConst value or greater than the HiConst value, and you branch over the 
code in the then clause if the value is within the range specified by the two con-
stants. The following examples demonstrate how to do this conversion:

// if( eax not in 1000..125_000 ) then add( 1000, eax );  endif;

          cmp( eax, 1000 );

          jb Add1000;

          cmp( eax, 125_000 );

          jbe SkipAdd1000;
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               Add1000:

               add( 1000, eax );

          SkipAdd1000:

// if( i32 not in -5..5 ) then mov( 0, i32 );  endif;

          cmp( i32, -5 );

          jl Zeroi32;

          cmp( i32, 5 );

          jle SkipZero;

               Zeroi32:

               mov( 0, i32 );

          SkipZero:

7.7.3 Implementing Complex if Statements Using Complete 
Boolean Evaluation
Many boolean expressions involve conjunction (and) or disjunction (or) oper-
ations. This section describes how to convert boolean expressions into assembly 
language. There are two different ways to convert complex boolean expres-
sions involving conjunction and disjunction into assembly language: using 
complete boolean evaluation or using short-circuit boolean evaluation. This 
section discusses complete boolean evaluation. The next section discusses 
short-circuit boolean evaluation.

Conversion via complete boolean evaluation is almost identical to con-
verting arithmetic expressions into assembly language. Indeed, the previous 
chapter on arithmetic covers this conversion process. About the only thing 
worth noting about that process is that you do not need to store the result in 
some variable; once the evaluation of the expression is complete, you check 
to see if you have a false (0) or true (1, or nonzero) result to take whatever 
action the boolean expression dictates. As you can see in the examples in the 
preceding sections, you can often use the fact that the last logical instruction 
(and/or) sets the zero flag if the result is false and clears the zero flag if the 
result is true. This lets you avoid explicitly testing for the result. Consider the 
following if statement and its conversion to assembly language using com-
plete boolean evaluation:

//     if( (( x < y ) && ( z > t )) || ( a != b ) ) 

//         << Stmt1 >>;

          mov( x, eax );

          cmp( eax, y );

          setl( bl );     // Store x<y in bl.

          mov( z, eax );

          cmp( eax, t );

          setg( bh );     // Store z>t in bh.

          and( bh, bl );  // Put (x<y) && (z>t) into bl.
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          mov( a, eax );

          cmp( eax, b );

          setne( bh );    // Store a != b into bh.

          or( bh, bl );   // Put (x<y) && (z>t) || (a != b) into bl.

          je SkipStmt1;   // Branch if result is false.

     << Code for Stmt1 goes here. >> 

SkipStmt1:

This code computes a boolean result in the BL register and then, at the 
end of the computation, tests this value to see if it contains true or false. If the 
result is false, this sequence skips over the code associated with Stmt1. The 
important thing to note in this example is that the program will execute each 
and every instruction that computes this boolean result (up to the je instruction).

7.7.4 Short-Circuit Boolean Evaluation

If you are willing to expend a little more effort, you can usually convert a bool-
ean expression to a much shorter and faster sequence of assembly language 
instructions using short-circuit boolean evaluation. Short-circuit boolean evalua-
tion attempts to determine whether an expression is true or false by executing 
only some of the instructions that would compute the complete expression. 
For this reason, plus the fact that short-circuit boolean evaluation doesn’t 
require the use of any temporary registers, HLA uses short-circuit evaluation 
when translating complex boolean expressions into assembly language.

Consider the expression a && b. Once we determine that a is false, there is 
no need to evaluate b because there is no way the expression can be true. If 
and b represent subexpressions rather than simple variables, the savings 
possible with short-circuit boolean evaluation are apparent. As a concrete 
example, consider the subexpression ((x<y) && (z>t)) from the previous sec-
tion. Once you determine that x is not less than y, there is no need to check to 
see if z is greater than t because the expression will be false regardless of z and 
t’s values. The following code fragment shows how you can implement short-
circuit boolean evaluation for this expression:

// if( (x<y) && (z>t) ) then ...

          mov( x, eax );

          cmp( eax, y );

          jnl TestFails;

          mov( z, eax );

          cmp( eax, t );

          jng TestFails;

               << Code for THEN clause of IF statement >>

          TestFails:
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Notice how the code skips any further testing once it determines that x is 
not less than y. Of course, if x is less than y, then the program has to test z to 
see if it is greater than t; if not, the program skips over the then clause. Only if 
the program satisfies both conditions does the code fall through to the then
clause.

For the logical or operation the technique is similar. If the first subexpres-
sion evaluates to true, then there is no need to test the second operand. 
Whatever the second operand’s value is at that point, the full expression still 
evaluates to true. The following example demonstrates the use of short-circuit 
evaluation with disjunction (or):

// if( ch < 'A' || ch > 'Z' ) 

// then stdout.put( "Not an uppercase char" ); 

// endif;

          cmp( ch, 'A' );

          jb ItsNotUC

          cmp( ch, 'Z' );

          jna ItWasUC;

               ItsNotUC:

               stdout.put( "Not an uppercase char" );

          ItWasUC:

Because the conjunction and disjunction operators are commutative, you 
can evaluate the left or right operand first if it is more convenient to do so.2

As one last example in this section, consider the full boolean expression from 
the previous section:

// if( (( x < y ) && ( z > t )) || ( a != b ) ) << Stmt1 >>;

          mov( a, eax );

          cmp( eax, b );

          jne DoStmt1;

          mov( x, eax );

          cmp( eax, y );

          jnl SkipStmt1;

          mov( z, eax );

          cmp( eax, t );

jng SkipStmt1;

               DoStmt1:

               << Code for Stmt1 goes here. >> 

          SkipStmt1:

2 However, be aware of the fact that some expressions depend on the leftmost subexpression 
evaluating one way in order for the rightmost subexpression to be valid; for example, a common 
test in C/C++ is if( x != NULL && x->y )...
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Notice how the code in this example chose to evaluate a != b first and the 
remaining subexpression last. This is a common technique assembly language 
programmers use to write better code.

7.7.5 Short-Circuit vs. Complete Boolean Evaluation

When using complete boolean evaluation, every statement in the sequence 
for that expression will execute; short-circuit boolean evaluation, on the 
other hand, may not require the execution of every statement associated with 
the boolean expression. As you’ve seen in the previous two sections, code 
based on short-circuit evaluation is usually shorter and faster. So it would 
seem that short-circuit evaluation is the technique of choice when converting 
complex boolean expressions to assembly language.

Sometimes, unfortunately, short-circuit boolean evaluation may not 
produce the correct result. In the presence of side effects in an expression, 
short-circuit boolean evaluation will produce a different result than complete 
boolean evaluation. Consider the following C/C++ example:

if( ( x == y ) && ( ++z != 0 )) << Stmt >>;

Using complete boolean evaluation, you might generate the following 
code:

          mov( x, eax );      // See if x == y.

          cmp( eax, y );

          sete( bl );

          inc( z );           // ++z

          cmp( z, 0 );        // See if incremented z is 0.

          setne( bh );

          and( bh, bl );      // Test x == y && ++z != 0.

          jz SkipStmt;

          << Code for Stmt goes here. >>

SkipStmt:

Using short-circuit boolean evaluation, you might generate the following 
code:

          mov( x, eax );      // See if x == y.

          cmp( eax, y );

          jne SkipStmt;

          inc( z );           // ++z

          cmp( z, 0 );        // See if incremented z is 0.

          je SkipStmt;

          << Code for Stmt goes here. >>

SkipStmt:
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Notice a very subtle but important difference between these two conver-
sions: If x is equal to y, then the first version above still increments z and compares 
it to 0 before it executes the code associated with Stmt; the short-circuit ver-
sion, on the other hand, skips the code that increments z if it turns out that x
is equal to y. Therefore, the behavior of these two code fragments is different 
if x is equal to y. Neither implementation is particularly wrong; depending on 
the circumstances you may or may not want the code to increment z if x is 
equal to y. However, it is important that you realize that these two schemes 
produce different results, so you can choose an appropriate implementation 
if the effect of this code on z matters to your program.

Many programs take advantage of short-circuit boolean evaluation and 
rely on the fact that the program may not evaluate certain components of the 
expression. The following C/C++ code fragment demonstrates what is proba-
bly the most common example that requires short-circuit boolean evaluation:

                    if( Ptr != NULL && *Ptr == 'a' ) << Stmt >>;

If it turns out that Ptr is NULL, then the expression is false and there is no 
need to evaluate the remainder of the expression (and, therefore, code that 
uses short-circuit boolean evaluation will not evaluate the remainder of this 
expression). This statement relies on the semantics of short-circuit boolean 
evaluation for correct operation. Were C/C++ to use complete boolean eval-
uation, and the variable Ptr contained NULL, then the second half of the 
expression would attempt to dereference a NULL pointer (which tends to crash 
most programs). Consider the translation of this statement using complete 
and short-circuit boolean evaluation:

// Complete boolean evaluation:

          mov( Ptr, eax );

          test( eax, eax );    // Check to see if eax is 0 (NULL is 0).

          setne( bl );

          mov( [eax], al );    // Get *Ptr into al.

          cmp( al, 'a' );

          sete( bh );

          and( bh, bl );

          jz SkipStmt;

          << Code for Stmt goes here. >>

SkipStmt:

Notice in this example that if Ptr contains NULL (0), then this program will 
attempt to access the data at location 0 in memory via the mov( [eax], al );
instruction. Under most operating systems this will cause a memory access 
fault (general protection fault).
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Now consider the short-circuit boolean conversion:

// Short-circuit boolean evaluation

          mov( Ptr, eax );     // See if Ptr contains NULL (0) and

          test( eax, eax );    // immediately skip past Stmt if this

          jz SkipStmt;         // is the case.

          mov( [eax], al );    // If we get to this point, Ptr contains

          cmp( al, 'a' );      // a non-NULL value, so see if it points

          jne SkipStmt;        // at the character 'a'.

          << Code for Stmt goes here. >>

SkipStmt:

As you can see in this example, the problem with dereferencing the NULL
pointer doesn’t exist. If Ptr contains NULL, this code skips over the statements 
that attempt to access the memory address Ptr contains.

7.7.6 Efficient Implementation of if Statements in Assembly Language

Encoding if statements efficiently in assembly language takes a bit more 
thought than simply choosing short-circuit evaluation over complete boolean 
evaluation. To write code that executes as quickly as possible in assembly 
language, you must carefully analyze the situation and generate the code 
appropriately. The following paragraphs provide some suggestions you can 
apply to your programs to improve their performance.

7.7.6.1 Know Your Data!

A mistake programmers often make is the assumption that data is random. In 
reality, data is rarely random, and if you know the types of values that your 
program commonly uses, you can use this knowledge to write better code. To 
see how, consider the following C/C++ statement:

          if(( a == b ) && ( c < d )) ++i;

Because C/C++ uses short-circuit evaluation, this code will test to see if a
is equal to b. If so, then it will test to see if c is less than d. If you expect a to be 
equal to b most of the time but don’t expect c to be less than d most of the 
time, this statement will execute slower than it should. Consider the following 
HLA implementation of this code:

          mov( a, eax );

          cmp( eax, b );

          jne DontIncI;
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          mov( c, eax );

          cmp( eax, d );

          jnl DontIncI;

               inc( i );

          DontIncI:

As you can see in this code, if a is equal to b most of the time and c is not 
less than d most of the time, you will have to execute all six instructions nearly 
every time in order to determine that the expression is false. Now consider 
the following implementation of the above C/C++ statement that takes 
advantage of this knowledge and the fact that the && operator is commutative:

          mov( c, eax );

          cmp( eax, d );

          jnl DontIncI;

          mov( a, eax );

          cmp( eax, b );

          jne DontIncI;

               inc( i );

          DontIncI:

In this example the code first checks to see if c is less than d. If most of the 
time c is less than d, then this code determines that it has to skip to the label 
DontIncI after executing only three instructions in the typical case (compared 
with six instructions in the previous example). This fact is much more obvious 
in assembly language than in a high-level language; this is one of the main 
reasons why assembly programs are often faster than their high-level language 
counterparts: optimizations are more obvious in assembly language than in a 
high-level language. Of course, the key here is to understand the behavior of 
your data so you can make intelligent decisions such as the one above.

7.7.6.2 Rearranging Expressions

Even if your data is random (or you can’t determine how the input values will 
affect your decisions), there may still be some benefit to rearranging the terms 
in your expressions. Some calculations take far longer to compute than others. 
For example, the div instruction is much slower than a simple cmp instruction. 
Therefore, if you have a statement like the following, you may want to rear-
range the expression so that the cmp comes first:

if( (x % 10 = 0 ) && (x != y ) ++x;
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Converted to assembly code, this if statement becomes:

          mov( x, eax );            // Compute X % 10.

          cdq();                    // Must sign extend eax -> edx:eax.

          imod( 10, edx:eax );      // Remember, remainder goes into edx.

          test( edx, edx );         // See if edx is 0.

          jnz SkipIf;

          mov( x, eax );

          cmp( eax, y );

          je SkipIf;

               inc( x );

          SkipIf:

The imod instruction is very expensive (often 50–100 times slower than 
most of the other instructions in this example). Unless it is 50–100 times 
more likely that the remainder is 0 rather than x is equal to y, it would be better 
to do the comparison first and the remainder calculation afterward:

          mov( x, eax );

          cmp( eax, y );

          je SkipIf;

          mov( x, eax );            // Compute X % 10.

          cdq();                    // Must sign extend eax -> edx:eax.

          imod( 10, edx:eax );      // Remember, remainder goes into edx.

          test( edx, edx );         // See if edx is 0.

          jnz SkipIf;

               inc( x );

          SkipIf:

Of course, in order to rearrange the expression in this manner, the code 
must not assume the use of short-circuit evaluation semantics (because the &&
and || operators are not commutative if the code must compute one subex-
pression before another).

7.7.6.3 Destructuring Your Code

Although there are many good things to be said about structured program-
ming techniques, there are some drawbacks to writing structured code. 
Specifically, structured code is sometimes less efficient than unstructured 
code. Most of the time this is tolerable because unstructured code is difficult 
to read and maintain; it is often acceptable to sacrifice some performance in 
exchange for maintainable code. In certain instances, however, you may need 
all the performance you can get. In those rare instances you might choose to 
compromise the readability of your code in order to gain some additional 
performance.
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One classic way to do this is to use code movement to move code your 
program rarely uses out of the way of code that executes most of the time. For 
example, consider the following pseudo C/C++ statement:

     if( See_If_an_Error_Has_Occurred )

     {

          << Statements to execute if no error >>

     }

     else

     {

          << Error handling statements >>

     }

In normal code, one does not expect errors to be frequent. Therefore, 
you would normally expect the then section of the above if to execute far 
more often than the else clause. The code above could translate into the follow-
ing assembly code:

     cmp( See_If_an_Error_Has_Occurred, true );

     je HandleTheError;

          << Statements to execute if no error >>

          jmp EndOfIF;

     HandleTheError:

          << Error handling statements >>

     EndOfIf:

Notice that if the expression is false, this code falls through to the normal 
statements and then jumps over the error-handling statements. Instructions 
that transfer control from one point in your program to another (for exam-
ple, jmp instructions) tend to be slow. It is much faster to execute a sequential 
set of instructions rather than jump all over the place in your program. Unfor-
tunately, the code above doesn’t allow this. One way to rectify this problem is 
to move the else clause of the code somewhere else in your program. That is, 
you could rewrite the code as follows:

     cmp( See_If_an_Error_Has_Occurred, true );

     je HandleTheError;

          << Statements to execute if no error >>

     EndOfIf:

At some other point in your program (typically after a jmp instruction) 
you would insert the following code:

     HandleTheError:

          << Error handling statements >>

          jmp EndOfIf;
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Note that the program isn’t any shorter. The jmp you removed from the 
original sequence winds up at the end of the else clause. However, because 
the else clause rarely executes, moving the jmp instruction from the then clause 
(which executes frequently) to the else clause is a big performance win because 
the then clause executes using only straight-line code. This technique is sur-
prisingly effective in many time-critical code segments.

There is a difference between writing destructured code and writing 
unstructured code. Unstructured code is written in an unstructured way to 
begin with. It is generally hard to read, difficult to maintain, and often con-
tains defects. Destructured code, on the other hand, starts out as structured 
code, and you make a conscious decision to eliminate the structure in order 
to gain a small performance boost. Generally, you’ve already tested the code 
in its structured form before destructuring it. Therefore, destructured code is 
often easier to work with than unstructured code.

7.7.6.4 Calculation Rather Than Branching

On many processors in the 80x86 family, branches ( jumps) are very expen-
sive compared to many other instructions. For this reason it is sometimes 
better to execute more instructions in a sequence than fewer instructions 
that involve branching. For example, consider the simple assignment 
eax = abs( eax );. Unfortunately, there is no 80x86 instruction that com-
putes the absolute value of an integer. The obvious way to handle this is with 
an instruction sequence like the following:

          test( eax, eax );

          jns ItsPositive;

               neg( eax );

          ItsPositive:

However, as you can plainly see in this example, it uses a conditional 
jump to skip over the neg instruction (that creates a positive value in EAX if 
EAX was negative). Now consider the following sequence that will also do 
the job:

// Set edx to $FFFF_FFFF if eax is negative, $0000_0000 if eax is 

// 0 or positive:

          cdq();

// If eax was negative, the following code inverts all the bits in eax;

// otherwise it has no effect on eax.

          xor( edx, eax );

// If eax was negative, the following code adds 1 to eax; otherwise

// it doesn't modify eax's value.
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          and( 1, edx );      // edx = 0 or 1 (1 if eax was negative).

          add( edx, eax );

This code will invert all the bits in EAX and then add 1 to EAX if EAX was 
negative prior to the sequence; that is, it negates the value in EAX. If EAX 
was 0 or positive, then this code does not change the value in EAX.

Note that this sequence takes four instructions rather than the three the 
previous example requires. However, because there are no transfer-of-control 
instructions in this sequence, it may execute faster on many CPUs in the 
80x86 family.

7.7.7 switch/case Statements 

The HLA switch statement takes the following form:

      switch( reg32 )

case( const1 )

               << Stmts1: code to execute if reg32 equals const1 >>

case( const2 )

               << Stmts2: code to execute if reg32 equals const2 >>

            .

            .

            .

case( constn )

               << Stmtsn: code to execute if reg32 equals constn >> 

default      // Note that the default section is optional.

               << Stmts_default: code to execute if reg32

does not equal any of the case values >> 

     endswitch;

When this statement executes, it checks the value of the register against 
the constants const1..constn. If a match is found, then the corresponding 
statements execute. HLA places a few restrictions on the switch statement. 
First, the HLA switch statement allows only a 32-bit register as the switch
expression. Second, all the constants in the case clauses must be unique. The 
reason for these restrictions will become clear in a moment.

Most introductory programming texts introduce the switch/case statement 
by explaining it as a sequence of if..then..elseif..else..endif statements. 
They might claim that the following two pieces of HLA code are equivalent:

     switch( eax ) 

          case(0) stdout.put("i=0");

          case(1) stdout.put("i=1");

          case(2) stdout.put("i=2");

     endswitch;
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     if( eax = 0 ) then 

          stdout.put("i=0")

     elseif( eax = 1 ) then 

          stdout.put("i=1")

     elseif( eax = 2 ) then 

          stdout.put("i=2");

     endif;

While semantically these two code segments may be the same, their 
implementation is usually different. Whereas the if..then..elseif..else..endif
chain does a comparison for each conditional statement in the sequence, the 
switch statement normally uses an indirect jump to transfer control to any one 
of several statements with a single computation. Consider the two examples 
presented above; they could be written in assembly language with the follow-
ing code:

// if..then..else..endif form: 

          mov( i, eax );

          test( eax, eax );   // Check for 0.

          jnz Not0;

               stdout.put( "i=0" );

               jmp EndCase;

          Not0:

          cmp( eax, 1 );

          jne Not1;

               stdou.put( "i=1" );

               jmp EndCase;

          Not1:

          cmp( eax, 2 );

          jne EndCase;

               stdout.put( "i=2" );

     EndCase: 

// Indirect Jump Version

readonly

     JmpTbl:dword[3] := [ &Stmt0, &Stmt1, &Stmt2 ];

           .

           .

           .

     mov( i, eax );

     jmp( JmpTbl[ eax*4 ] );

          Stmt0:

               stdout.put( "i=0" );

               jmp EndCase;
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          Stmt1:

               stdout.put( "I=1" );

               jmp EndCase;

          Stmt2:

               stdout.put( "I=2" );

     EndCase: 

The implementation of the if..then..elseif..else..endif version is fairly 
obvious and needs little in the way of explanation. The indirect jump version, 
however, is probably quite mysterious to you, so let’s consider how this partic-
ular implementation of the switch statement works.

Remember that there are three common forms of the jmp instruction. The 
standard unconditional jmp instruction, like the jmp EndCase; instruction in the 
previous examples, transfers control directly to the statement label specified 
as the jmp operand. The second form of the jmp instruction—jmp( reg32 );—
transfers control to the memory location specified by the address found in a 
32-bit register. The third form of the jmp instruction, the one the previous 
example uses, transfers control to the instruction specified by the contents 
of a double-word memory location. As this example clearly illustrates, that 
memory location can use any addressing mode. You are not limited to the 
displacement-only addressing mode. Now let’s consider exactly how this sec-
ond implementation of the switch statement works.

To begin with, a switch statement requires that you create an array of 
pointers with each element containing the address of a statement label in 
your code (those labels must be attached to the sequence of instructions to 
execute for each case in the switch statement). In the example above, the 
JmpTbl array serves this purpose. Note that this code initializes JmpTbl with the 
address of the statement labels Stmt0, Stmt1, and Stmt2. The program places 
this array in the readonly section because the program should never change 
these values during execution.

WARNING Whenever you initialize an array with a set of addresses of statement labels as in this 
example, the declaration section in which you declare the array (e.g., readonly in this
case) must be in the same procedure that contains the statement labels.3

During the execution of this code sequence, the program loads the EAX 
register with i’s value. Then the program uses this value as an index into the 
JmpTbl array and transfers control to the 4-byte address found at the specified 
location. For example, if EAX contains 0, the jmp( JmpTbl[eax*4] ); instruction 
will fetch the double word at address JmpTbl+0 ( eax*4=0 ). Because the first 
double word in the table contains the address of Stmt0, the jmp instruction 
transfers control to the first instruction following the Stmt0 label. Likewise, if i
(and therefore, EAX) contains 1, then the indirect jmp instruction fetches the 
double word at offset 4 from the table and transfers control to the first instruc-
tion following the Stmt1 label (because the address of Stmt1 appears at offset 

3 If the switch statement appears in your main program, you must declare the array in the 
declaration section of your main program.
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4 in the table). Finally, if i/EAX contains 2, then this code fragment transfers 
control to the statements following the Stmt2 label because it appears at offset 8 
in the JmpTbl table.

You should note that as you add more (consecutive) cases, the jump table 
implementation becomes more efficient (in terms of both space and speed) 
than the if/elseif form. Except for simple cases, the switch statement is almost 
always faster and usually by a large margin. As long as the case values are con-
secutive, the switch statement version is usually smaller as well.

What happens if you need to include nonconsecutive case labels or you 
cannot be sure that the switch value doesn’t go out of range? With the HLA 
switch statement, such an occurrence will transfer control to the first state-
ment after the endswitch clause (or to a default case, if one is present in the 
switch). However, this doesn’t happen in the example above. If variable i does 
not contain 0, 1, or 2, executing the code above produces undefined results. 
For example, if i contains 5 when you execute the code in the previous 
example, the indirect jmp instruction will fetch the dword at offset 20 (5 * 4) 
in JmpTbl and transfer control to that address. Unfortunately, JmpTbl doesn’t 
have six entries; so the program will wind up fetching the value of the third 
double word following JmpTbl and use that as the target address. This will 
often crash your program or transfer control to an unexpected location.

The solution is to place a few instructions before the indirect jmp to verify 
that the switch selection value is within some reasonable range. In the previ-
ous example, we’d probably want to verify that i’s value is in the range 0..2 
before executing the jmp instruction. If i’s value is outside this range, the pro-
gram should simply jump to the endcase label (this corresponds to dropping 
down to the first statement after the endswitch clause). The following code 
provides this modification:

readonly

     JmpTbl:dword[3] := [ &Stmt0, &Stmt1, &Stmt2 ];

      .

      .

      .

     mov( i, eax );

     cmp( eax, 2 );          // Verify that i is in the range

     ja EndCase;             // 0..2 before the indirect jmp.

     jmp( JmpTbl[ eax*4 ] );

          Stmt0:

               stdout.put( "i=0" );

               jmp EndCase;

          Stmt1:

               stdout.put( "i=1" );

               jmp EndCase;
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          Stmt2:

               stdout.put( "i=2" );

     EndCase: 

Although the example above handles the problem of selection values 
being outside the range 0..2, it still suffers from a couple of severe restrictions:

The cases must start with the value 0. That is, the minimum case constant 
has to be 0 in this example.

The case values must be contiguous.

Solving the first problem is easy, and you deal with it in two steps. First, 
you must compare the case selection value against a lower and upper bounds 
before determining if the case value is legal. For example:

// SWITCH statement specifying cases 5, 6, and 7:

// WARNING: This code does *NOT* work. Keep reading to find out why.

     mov( i, eax );

     cmp( eax, 5 );

     jb EndCase

     cmp( eax, 7 );              // Verify that i is in the range

     ja EndCase;                 // 5..7 before the indirect jmp.

     jmp( JmpTbl[ eax*4 ] );

          Stmt5:

               stdout.put( "i=5" );

               jmp EndCase;

          Stmt6:

               stdout.put( "i=6" );

               jmp EndCase;

          Stmt7:

               stdout.put( "i=7" );

     EndCase: 

As you can see, this code adds a pair of extra instructions, cmp and jb, to test 
the selection value to ensure it is in the range 5..7. If not, control drops down to 
the EndCase label; otherwise control transfers via the indirect jmp instruction. 
Unfortunately, as the comments point out, this code is broken. Consider what 
happens if variable i contains the value 5: the code will verify that 5 is in the 
range 5..7 and then it will fetch the dword at offset 20 (5*@size(dword)) and 
jump to that address. As before, however, this loads 4 bytes outside the bounds 
of the table and does not transfer control to a defined location. One solution 
is to subtract the smallest case selection value from EAX before executing the 
jmp instruction, as shown in the following example.
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// SWITCH statement specifying cases 5, 6, and 7:

// WARNING: There is a better way to do this. Keep reading.

readonly

     JmpTbl:dword[3] := [ &Stmt5, &Stmt6, &Stmt7 ];

           .

           .

           .

     mov( i, eax );

     cmp( eax, 5 );

     jb EndCase

     cmp( eax, 7 );              // Verify that i is in the range

     ja EndCase;                 // 5..7 before the indirect jmp.

     sub( 5, eax );              // 5->0, 6->1, 7->2.

     jmp( JmpTbl[ eax*4 ] );

          Stmt5:

               stdout.put( "i=5" );

               jmp EndCase;

          Stmt6:

               stdout.put( "i=6" );

               jmp EndCase;

          Stmt7:

               stdout.put( "i=7" );

     EndCase: 

By subtracting 5 from the value in EAX, this code forces EAX to take on 
the value 0, 1, or 2 prior to the jmp instruction. Therefore, case-selection value 5 
jumps to Stmt5, case-selection value 6 transfers control to Stmt6, and case-selection 
value 7 jumps to Stmt7.

There is a sneaky way to improve the code above. You can eliminate the 
sub instruction by merging this subtraction into the jmp instruction’s address 
expression. Consider the following code that does this:

// SWITCH statement specifying cases 5, 6, and 7:

readonly

     JmpTbl:dword[3] := [ &Stmt5, &Stmt6, &Stmt7 ];

           .

           .

           .

     mov( i, eax );

     cmp( eax, 5 );

     jb EndCase

     cmp( eax, 7 );              // Verify that i is in the range

     ja EndCase;                 // 5..7 before the indirect jmp.

     jmp( JmpTbl[ eax*4 - 5*@size(dword)] );
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          Stmt5:

               stdout.put( "i=5" );

               jmp EndCase;

          Stmt6:

               stdout.put( "i=6" );

               jmp EndCase;

          Stmt7:

               stdout.put( "i=7" );

     EndCase: 

The HLA switch statement provides a default clause that executes if the 
case-selection value doesn’t match any of the case values. For example:

     switch( ebx )

          case( 5 )  stdout.put( "ebx=5" );

          case( 6 )  stdout.put( "ebx=6" );

          case( 7 )  stdout.put( "ebx=7" );

          default

               stdout.put( "ebx does not equal 5, 6, or 7" );

     endswitch;

Implementing the equivalent of the default clause in pure assembly lan-
guage is very easy. Just use a different target label in the jb and ja instructions 
at the beginning of the code. The following example implements an HLA 
switch statement similar to the one immediately above:

// SWITCH statement specifying cases 5, 6, and 7 with a DEFAULT clause:

readonly

     JmpTbl:dword[3] := [ &Stmt5, &Stmt6, &Stmt7 ];

           .

           .

           .

     mov( i, eax );

     cmp( eax, 5 );

     jb DefaultCase;

     cmp( eax, 7 );              // Verify that i is in the range

     ja DefaultCase;             // 5..7 before the indirect jmp.

     jmp( JmpTbl[ eax*4 - 5*@size(dword)] );

          Stmt5:

               stdout.put( "i=5" );

               jmp EndCase;
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          Stmt6:

               stdout.put( "i=6" );

               jmp EndCase;

          Stmt7:

               stdout.put( "i=7" );

               jmp EndCase;

          DefaultCase:

               stdout.put( "i does not equal 5, 6, or 7" );

     EndCase: 

The second restriction noted earlier, that the case values need to be 
contiguous, is easy to handle by inserting extra entries into the jump table. 
Consider the following HLA switch statement:

     switch( ebx )

          case( 1 ) stdout.put( "ebx = 1" );

          case( 2 ) stdout.put( "ebx = 2" );

          case( 4 ) stdout.put( "ebx = 4" );

          case( 8 ) stdout.put( "ebx = 8" );

          default

               stdout.put( "ebx is not 1, 2, 4, or 8" );

     endswitch;

The minimum switch value is 1 and the maximum value is 8. Therefore, 
the code before the indirect jmp instruction needs to compare the value in 
EBX against 1 and 8. If the value is between 1 and 8, it’s still possible that EBX 
might not contain a legal case-selection value. However, because the jmp
instruction indexes into a table of double words using the case-selection table, 
the table must have eight double-word entries. To handle the values between 
1 and 8 that are not case-selection values, simply put the statement label of the 
default clause (or the label specifying the first instruction after the endswitch if 
there is no default clause) in each of the jump table entries that don’t have a 
corresponding case clause. The following code demonstrates this technique:

readonly

     JmpTbl2: dword := 

                    [

                         &Case1, &Case2, &dfltCase, &Case4, 

                         &dfltCase, &dfltCase, &dfltCase, &Case8

                    ];

          .

          .

          .
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     cmp( ebx, 1 );

     jb dfltCase;

     cmp( ebx, 8 );

     ja dfltCase;

     jmp( JmpTbl2[ ebx*4 - 1*@size(dword) ] );

          Case1:

               stdout.put( "ebx = 1" );

               jmp EndOfSwitch;

          Case2:

               stdout.put( "ebx = 2" );

               jmp EndOfSwitch;

          Case4:

               stdout.put( "ebx = 4" );

               jmp EndOfSwitch;

          Case8:

               stdout.put( "ebx = 8" );

               jmp EndOfSwitch;

          dfltCase:

               stdout.put( "ebx is not 1, 2, 4, or 8" );

     EndOfSwitch:

There is a problem with this implementation of the switch statement. If 
the case values contain nonconsecutive entries that are widely spaced, the 
jump table could become exceedingly large. The following switch statement 
would generate an extremely large code file:

     switch( ebx )

          case( 1      ) << Stmt1 >>;

          case( 100    ) << Stmt2 >>;

          case( 1_000  ) << Stmt3 >>;

          case( 10_000 ) << Stmt4 >>;

          default << Stmt5 >>;

     endswitch; 

In this situation, your program will be much smaller if you implement the 
switch statement with a sequence of if statements rather than using an indi-
rect jump statement. However, keep one thing in mind—the size of the jump 
table does not normally affect the execution speed of the program. If the 
jump table contains two entries or two thousand, the switch statement will 
execute the multiway branch in a constant amount of time. The if statement 
implementation requires a linearly increasing amount of time for each case
label appearing in the case statement.
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Probably the biggest advantage to using assembly language over an HLL 
like Pascal or C/C++ is that you get to choose the actual implementation of 
statements like switch. In some instances you can implement a switch state-
ment as a sequence of if..then..elseif statements, or you can implement it as 
a jump table, or you can use a hybrid of the two:

     switch( eax )

          case( 0 ) << Stmt0 >>;

          case( 1 ) << Stmt1 >>;

          case( 2 ) << Stmt2 >>;

          case( 100 ) << Stmt3 >>;

          default << Stmt4 >>;

     endswitch;

This could become

          cmp( eax, 100 );

          je DoStmt3;

          cmp( eax, 2 );

          ja TheDefaultCase;

          jmp( JmpTbl[ eax*4 ]);

...

Of course, HLA supports the following code high-level control structures:

      if( ebx = 100 ) then 

         << Stmt3 >>;

     else

          switch( eax )

               case(0) << Stmt0 >>;

case(1) << Stmt1 >>;

case(2) << Stmt2 >>;

Otherwise << Stmt4 >>;

          endswitch;

     endif;

But this tends to destroy the readability of the program. On the other 
hand, the extra code to test for 100 in the assembly language code doesn’t 
adversely affect the readability of the program (perhaps because it’s so hard 
to read already). Therefore, most people will add the extra code to make 
their program more efficient.

The C/C++ switch statement is very similar to the HLA switch statement. 
There is only one major semantic difference: The programmer must explicitly 
place a break statement in each case clause to transfer control to the first state-
ment beyond the switch. This break corresponds to the jmp instruction at the 
end of each case sequence in the assembly code above. If the corresponding 
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break is not present, C/C++ transfers control into the code of the following 
case. This is equivalent to leaving off the jmp at the end of the case’s sequence:

     switch (i) 

     {

          case 0: << Stmt1 >>;

          case 1: << Stmt2 >>;

          case 2: << Stmt3 >>;

               break;

          case 3: << Stmt4 >>;

               break;

          default: << Stmt5 >>;

     }

This translates into the following 80x86 code:

readonly

     JmpTbl: dword[4] := [ &case0, &case1, &case2, &case3 ];

          .

          .

          .

          mov( i, ebx );

          cmp( ebx, 3 );

          ja DefaultCase;

          jmp( JmpTbl[ ebx*4 ]);

               case0:

                    Stmt1;

               case1:

                    Stmt2;

               case2:

                    Stmt3;

                    jmp EndCase;    // Emitted for the break stmt.

               case3:

                    Stmt4;

                    jmp EndCase;    // Emitted for the break stmt.

               DefaultCase:

                    Stmt5;

          EndCase:

7.8 State Machines and Indirect Jumps 
Another control structure commonly found in assembly language programs 
is the state machine. A state machine uses a state variable to control program 
flow. The FORTRAN programming language provides this capability with 
the assigned goto statement. Certain variants of C (for example, GNU’s GCC 
from the Free Software Foundation) provide similar features. In assembly 
language, the indirect jump can implement state machines.
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So what is a state machine? In very basic terms, it is a piece of code that 
keeps track of its execution history by entering and leaving certain “states.” 
For the purposes of this chapter, we’ll just assume that a state machine is a 
piece of code that (somehow) remembers the history of its execution (its 
state) and executes sections of code based on that history.

In a very real sense, all programs are state machines. The CPU registers 
and values in memory constitute the state of that machine. However, we’ll use 
a much more constrained view. Indeed, for most purposes only a single variable 
(or the value in the EIP register) will denote the current state.

Now let’s consider a concrete example. Suppose you have a procedure 
that you want to perform one operation the first time you call it, a different 
operation the second time you call it, yet something else the third time you 
call it, and then something new again on the fourth call. After the fourth call 
it repeats these four different operations in order. For example, suppose you 
want the procedure to add EAX and EBX the first time, subtract them on the 
second call, multiply them on the third, and divide them on the fourth. You 
could implement this procedure as follows:

procedure StateMachine;

static

     State:byte := 0;

begin StateMachine;

     cmp( State, 0 );

     jne TryState1;

          // State 0: Add ebx to eax and switch to State 1:

          add( ebx, eax );

          inc( State );

          exit StateMachine;

     TryState1:

     cmp( State, 1 );

     jne TryState2;

          // State 1: Subtract ebx from eax and switch to State 2:

          sub( ebx, eax );

          inc( State );       // State 1 becomes State 2.

          exit StateMachine;

     TryState2:

     cmp( State, 2 );

     jne MustBeState3;

          // If this is State 2, multiply ebx by eax and switch to State 3:

          intmul( ebx, eax );

          inc( State );       // State 2 becomes State 3.

          exit StateMachine;
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     // If it isn't one of the above states, we must be in State 3,

     // so divide eax by ebx and switch back to State 0.

     MustBeState3:

     push( edx );         // Preserve this 'cause it gets whacked by div.

     xor( edx, edx );     // Zero extend eax into edx.

     div( ebx, edx:eax);

     pop( edx );          // Restore edx's value preserved above.

     mov( 0, State );     // Reset the state back to 0.

end StateMachine;

Technically, this procedure is not the state machine. Instead, it is the vari-
able State and the cmp/jne instructions that constitute the state machine.

There is nothing particularly special about this code. It’s little more than 
a switch statement implemented via the if..then..elseif construct. The only 
thing unique about this procedure is that it remembers how many times it has 
been called4 and behaves differently depending upon the number of calls. 
While this is a correct implementation of the desired state machine, it is not 
particularly efficient. The astute reader, of course, would recognize that this 
code could be made a little faster using an actual switch statement rather than 
the if..then..elseif implementation. However, there is an even better solution.

A common implementation of a state machine in assembly language is to 
use an indirect jump. Rather than having a state variable that contains a value 
like 0, 1, 2, or 3, we could load the state variable with the address of the code 
to execute upon entry into the procedure. By simply jumping to that address, 
the state machine could save the tests needed to select the proper code frag-
ment. Consider the following implementation using the indirect jump:

procedure StateMachine;

static

     State:dword := &State0;

begin StateMachine;

     jmp( State );

          // State 0: Add ebx to eax and switch to State 1:

     State0:

          add( ebx, eax );

          mov( &State1, State );

          exit StateMachine;

     State1:

          // State 1: Subtract ebx from eax and switch to State 2:

4 Actually, it remembers how many times, modulo 4, that it has been called.
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          sub( ebx, eax );

          mov( &State2, State );    // State 1 becomes State 2.

          exit StateMachine;

     State2:

          // If this is State 2, multiply ebx by eax and switch to State 3:

          intmul( ebx, eax );

          mov( &State3, State );    // State 2 becomes State 3.

          exit StateMachine;

     // State 3: Divide eax by ebx and switch back to State 0.

     State3:

          push( edx ); // Preserve this 'cause it gets whacked by div.

          xor( edx, edx ); // Zero extend eax into edx.

          div( ebx, edx:eax);

          pop( edx ); // Restore edx's value preserved above.

          mov( &State0, State ); // Reset the state back to 0.

end StateMachine;

The jmp instruction at the beginning of the StateMachine procedure trans-
fers control to the location pointed at by the State variable. The first time you 
call StateMachine it points at the State0 label. Thereafter, each subsection of 
code sets the State variable to point at the appropriate successor code.

7.9 Spaghetti Code

One major problem with assembly language is that it takes several statements 
to realize a simple idea encapsulated by a single high-level language state-
ment. All too often an assembly language programmer will notice that she or 
he can save a few bytes or cycles by jumping into the middle of some program 
structure. After a few such observations (and corresponding modifications) 
the code contains a whole sequence of jumps in and out of portions of the 
code. If you were to draw a line from each jump to its destination, the result-
ing listing would end up looking like someone dumped a bowl of spaghetti on 
your code, hence the term spaghetti code.

Spaghetti code suffers from one major drawback—it’s difficult (at best) 
to read such a program and figure out what it does. Most programs start out 
in a “structured” form only to become spaghetti code when sacrificed at the 
altar of efficiency. Alas, spaghetti code is rarely efficient. Because it’s difficult 
to figure out exactly what’s going on, it’s very difficult to determine if you can 
use a better algorithm to improve the system. Hence, spaghetti code may wind 
up less efficient than structured code.
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While it’s true that producing some spaghetti code in your programs may 
improve its efficiency, doing so should always be a last resort after you’ve tried 
everything else and you still haven’t achieved what you need. Always start out 
writing your programs with straightforward if and switch statements. Start 
combining sections of code (via jmp instructions) once everything is working 
and well understood. Of course, you should never obliterate the structure of 
your code unless the gains are worth it.

A famous saying in structured programming circles is, “After gotos, point-
ers are the next most dangerous element in a programming language.” A 
similar saying is “Pointers are to data structures what gotos are to control struc-
tures.” In other words, avoid excessive use of pointers. If pointers and gotos
are bad, then the indirect jump must be the worst construct of all because it 
involves both gotos and pointers! Seriously, though, the indirect jump instruc-
tion should be avoided for casual use. Its use tends to make a program harder 
to read. After all, an indirect jump can (theoretically) transfer control to any 
point within a program. Imagine how hard it would be to follow the flow 
through a program if you have no idea what a pointer contains and you come 
across an indirect jump using that pointer. Therefore, you should always exer-
cise care when using jump indirect instructions.

7.10 Loops

Loops represent the final basic control structure (sequences, decisions, and 
loops) that make up a typical program. Like so many other structures in assem-
bly language, you’ll find yourself using loops in places you’ve never dreamed of 
using loops. Most high-level languages have implied loop structures hidden 
away. For example, consider the BASIC statement if A$ = B$ then 100. This if
statement compares two strings and jumps to statement 100 if they are equal. 
In assembly language, you would need to write a loop to compare each char-
acter in A$ to the corresponding character in B$ and then jump to statement 
100 if and only if all the characters matched. In BASIC, there is no loop to be 
seen in the program. Assembly language requires a loop to compare the indi-
vidual characters in the string.5 This is but a small example that shows how 
loops seem to pop up everywhere.

Program loops consist of three components: an optional initialization 
component, an optional loop termination test, and the body of the loop. The 
order in which you assemble these components can dramatically affect the 
loop’s operation. Three permutations of these components appear frequently 
in programs. Because of their frequency, these loop structures are given special 
names in high-level languages: while loops, repeat..until loops (do..while in 
C/C++), and infinite loops (e.g., forever..endfor in HLA).

5 Of course, the HLA Standard Library provides the str.eq routine that compares the strings for 
you, effectively hiding the loop even in an assembly language program.

The Art of Assembly Language, 2nd Edition
(C) 2010 by Randall Hyde



Low-Level  Cont rol  S t ruc tures 457

7.10.1 while Loops

The most general loop is the while loop. In HLA’s high-level syntax it takes the 
following form:

     while( expression ) do statements endwhile;

There are two important points to note about the while loop. First, the 
test for termination appears at the beginning of the loop. Second, as a direct 
consequence of the position of the termination test, the body of the loop may 
never execute if the boolean expression is always false.

Consider the following HLA while loop:

     mov( 0, i );

     while( i < 100 ) do 

          inc( i );

     endwhile;

The mov( 0, i ); instruction is the initialization code for this loop. i is a 
loop-control variable, because it controls the execution of the body of the loop. 
i < 100 is the loop termination condition. That is, the loop will not terminate 
as long as i is less than 100. The single instruction inc( i ); is the loop body 
that executes on each loop iteration.

Note that an HLA while loop can be easily synthesized using if and jmp
statements. For example, you may replace the previous HLA while loop with 
the following HLA code:

     mov( 0, i );

     WhileLp:

     if( i < 100 ) then

          inc( i );

          jmp WhileLp;

     endif;

More generally, you can construct any while loop as follows:

     << Optional initialization code >>

     UniqueLabel:

     if( not_termination_condition ) then

          

          << Loop body >>

          jmp UniqueLabel;

     endif;
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Therefore, you can use the techniques from earlier in this chapter to convert 
if statements to assembly language and add a single jmp instruction to produce 
a while loop. The example we’ve been looking at in this section translates to 
the following pure 80x86 assembly code:6

     mov( 0, i );

     WhileLp:

          cmp( i, 100 );

          jnl WhileDone;

          inc( i );

          jmp WhileLp;

     WhileDone:

7.10.2 repeat..until Loops

The repeat..until (do..while) loop tests for the termination condition at the 
end of the loop rather than at the beginning. In HLA high-level syntax, the 
repeat..until loop takes the following form:

     << Optional initialization code >>

     repeat

          << Loop body >>

     until( termination_condition );

This sequence executes the initialization code, then executes the loop 
body, and finally tests some condition to see if the loop should repeat. If the 
boolean expression evaluates to false, the loop repeats; otherwise the loop ter-
minates. The two things you should note about the repeat..until loop are that 
the termination test appears at the end of the loop and, as a direct consequence 
of this, the loop body always executes at least once.

Like the while loop, the repeat..until loop can be synthesized with an if
statement and a jmp. You could use the following:

     << Initialization code >>

     SomeUniqueLabel:

          << Loop body >>

     if( not_the_termination_condition ) then jmp SomeUniqueLabel; endif;

6 Note that HLA will actually convert most while statements to different 80x86 code than this 
section presents. The reason for the difference appears in Section 7.11, when we explore how to 
write more efficient loop code.
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Based on the material presented in the previous sections, you can easily 
synthesize repeat..until loops in assembly language. The following is a simple 
example:

     repeat

          stdout.put( "Enter a number greater than 100: " );

          stdin.get( i );

     until( i > 100 );

// This translates to the following if/jmp code:

     RepeatLabel:

          stdout.put( "Enter a number greater than 100: " );

          stdin.get( i );

     if( i <= 100 ) then jmp RepeatLabel; endif;

// It also translates into the following "pure" assembly code:

     RepeatLabel:

          stdout.put( "Enter a number greater than 100: " );

          stdin.get( i );

     cmp( i, 100 );

     jng RepeatLabel;

7.10.3 forever..endfor Loops

If while loops test for termination at the beginning of the loop and repeat..until
loops check for termination at the end of the loop, the only place left to test for 
termination is in the middle of the loop. The HLA high-level forever..endfor
loop, combined with the break and breakif statements, provides this capabil-
ity. The forever..endfor loop takes the following form:

     forever

          << Loop body >>

     endfor;
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Note that there is no explicit termination condition. Unless otherwise 
provided for, the forever..endfor construct forms an infinite loop. A breakif
statement usually handles loop termination. Consider the following HLA 
code that employs a forever..endfor construct:

     forever

          stdin.get( character );

          breakif( character = '.' );

          stdout.put( character );

     endfor;

Converting a forever loop to pure assembly language is easy. All you need 
is a label and a jmp instruction. The breakif statement in this example is really 
nothing more than an if and a jmp instruction. The pure assembly language 
version of the code above looks something like the following:

     foreverLabel:

          stdin.get( character );

          cmp( character, '.' );

          je ForIsDone;

          stdout.put( character );

          jmp foreverLabel;

     ForIsDone:

7.10.4 for Loops

The for loop is a special form of the while loop that repeats the loop body a 
specific number of times. In HLA, the for loop takes the following form:

     for( Initialization_Stmt; Termination_Expression; inc_Stmt ) do

          << statements >>

     endfor;

This is completely equivalent to the following:

     Initialization_Stmt;

     while( Termination_Expression ) do

          << statements >>

          inc_Stmt;

     endwhile;
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Traditionally, programs use the for loop to process arrays and other 
objects accessed in sequential order. One normally initializes a loop-control 
variable with the initialization statement and then uses the loop-control vari-
able as an index into the array (or other data type). For example:

for( mov( 0, esi ); esi < 7; inc( esi )) do

     stdout.put( "Array Element = ", SomeArray[ esi*4 ], nl );

endfor;

To convert this to pure assembly language, begin by translating the for
loop into an equivalent while loop:

          mov( 0, esi );

          while( esi < 7 ) do

               stdout.put( "Array Element = ", SomeArray[ esi*4 ], nl );

               inc( esi );

          endwhile;

Now, using the techniques from the section on while loops, translate the 
code into pure assembly language:

          mov( 0, esi );

          WhileLp:

          cmp( esi, 7 );

          jnl EndWhileLp;

               stdout.put( "Array Element = ", SomeArray[ esi*4 ], nl );

               inc( esi );

               jmp WhileLp;

          EndWhileLp:

7.10.5 The break and continue Statements

The HLA break and continue statements both translate into a single jmp instruc-
tion. The break instruction exits the loop that immediately contains the break
statement; the continue statement restarts the loop that immediately contains 
the continue statement.

Converting a break statement to pure assembly language is very easy. Just 
emit a jmp instruction that transfers control to the first statement following the 
endxxxx (or until) clause of the loop to exit. You can do this by placing a label 
after the associated endxxxx clause and jumping to that label. The following 
code fragments demonstrate this technique for the various loops.
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// Breaking out of a FOREVER loop:

forever

     << stmts >>

          // break;

          jmp BreakFromForever;

     << stmts >>

endfor;

BreakFromForever:

// Breaking out of a FOR loop;

for( initStmt; expr; incStmt ) do

     << stmts >>

          // break;

          jmp BrkFromFor;

     << stmts >>

endfor;

BrkFromFor:

// Breaking out of a WHILE loop:

while( expr ) do

     << stmts >>

          // break;

          jmp BrkFromWhile;

     << stmts >>

endwhile;

BrkFromWhile:

// Breaking out of a REPEAT..UNTIL loop:

repeat

     << stmts >>

          // 20break;

          jmp BrkFromRpt;

     << stmts >>

until( expr );

BrkFromRpt:

The continue statement is slightly more complex than the break state-
ment. The implementation is still a single jmp instruction; however, the 
target label doesn’t wind up going in the same spot for each of the different 
loops. Figures 7-2, 7-3, 7-4, and 7-5 show where the continue statement transfers 
control for each of the HLA loops.

Figure 7-2: continue destination 
for the forever loop

forever

    << stmts >>

    continue;

    << stmts >>

endfor;
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Figure 7-3: continue destination and the while loop

Figure 7-4: continue destination and the for loop 

Figure 7-5: continue destination and the repeat..until loop

The following code fragments demonstrate how to convert the continue
statement into an appropriate jmp instruction for each of these loop types.

forever..continue..endfor

// Conversion of forever loop with continue

// to pure assembly:

forever

     << stmts >>

     continue;

     << stmts >>

endfor;

// Converted code:

foreverLbl:

     << stmts >>

          // continue;

          jmp foreverLbl;

     << stmts >>

     jmp foreverLbl;

while..continue..endwhile

// Conversion of while loop with continue

// into pure assembly:

while( expr ) do

    << stmts >>

    continue;

    << stmts >>

endwhile;

for( initStmt; expr; incStmt ) do

    << stmts >>

    continue;

    << stmts >>

endfor;

Note: continue forces the 
execution of the incStmt
clause and then transfers control 
to the test for loop termination.

repeat

    << stmts >>

    continue;

    << stmts >>

until( expr );
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while( expr ) do

     << stmts >>

     continue;

     << stmts >>

endwhile;

// Converted code:

whlLabel:

<< Code to evaluate expr >>

jcc EndOfWhile;         // Skip loop on expr failure.

     << stmts >>

          // continue;

          jmp whlLabel; // Jump to start of loop on continue.

     << stmts >>

     jmp whlLabel;      // Repeat the code.

EndOfwhile:

for..continue..endfor

// Conversion for a for loop with continue

// into pure assembly:

for( initStmt; expr; incStmt ) do

     << stmts >>

     continue;

     << stmts >>

endfor;

// Converted code:

initStmt

ForLpLbl:

<< Code to evaluate expr >>

jcc EndOfFor;           // Branch if expression fails.

     << stmts >>

          // continue;

          jmp ContFor;  // Branch to incStmt on continue.

     << stmts >>

     ContFor:

     incStmt

     jmp ForLpLbl;

EndOfFor:

repeat..continue..until

repeat

     << stmts >>

     continue;

     << stmts >>

until( expr );
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// Converted code:

RptLpLbl:

     << stmts >>

          // continue;

          jmp ContRpt;  // Continue branches to loop termination test.

          << stmts >>

     ContRpt:

     << Code to test expr >>

     jcc RptLpLbl;      // Jumps if expression evaluates false.

7.10.6 Register Usage and Loops  

Given that the 80x86 accesses registers more efficiently than memory loca-
tions, registers are the ideal spot to place loop-control variables (especially for 
small loops). However, there are some problems associated with using regis-
ters within a loop. The primary problem with using registers as loop-control 
variables is that registers are a limited resource. The following will not work 
properly because it attempts to reuse a register (CX) that is already in use:

          mov( 8, cx );

          loop1:

               mov( 4, cx );

               loop2:

                    << stmts >>

                    dec( cx );

                    jnz loop2;

               dec( cx );

           jnz loop1;

The intent here, of course, was to create a set of nested loops, that is, one 
loop inside another. The inner loop (loop2) should repeat four times for each 
of the eight executions of the outer loop (loop1). Unfortunately, both loops 
use the same register as a loop-control variable. Therefore, this will form an 
infinite loop because CX will contain 0 at the end of the first loop. Because 
CX is always 0 upon encountering the second dec instruction, control will 
always transfer to the loop1 label (because decrementing 0 produces a non-
zero result). The solution here is to save and restore the CX register or to use 
a different register in place of CX for the outer loop:

          mov( 8, cx );

          loop1:

               push( cx );

               mov( 4, cx );

               loop2:

                    << stmts >>

                    dec( cx );

                    jnz loop2;

               pop( cx );
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               dec( cx );

               jnz loop1;

or

          mov( 8, dx );

          loop1:

               mov( 4, cx );

               loop2:

                    << stmts >>

                    dec( cx );

                    jnz loop2;

               dec( dx );

               jnz loop1;

Register corruption is one of the primary sources of bugs in loops in 
assembly language programs, so always keep an eye out for this problem.

7.11 Performance Improvements

The 80x86 microprocessors execute sequences of instructions at blinding 
speed. Therefore, you’ll rarely encounter a slow program that doesn’t contain 
any loops. Because loops are the primary source of performance problems 
within a program, they are the place to look when attempting to speed up 
your software. While a treatise on how to write efficient programs is beyond 
the scope of this chapter, there are some things you should be aware of when 
designing loops in your programs. They’re all aimed at removing unnecessary 
instructions from your loops in order to reduce the time it takes to execute a 
single iteration of the loop.

7.11.1 Moving the Termination Condition to the End of a Loop

Consider the following flow graphs for the three types of loops presented earlier:

repeat..until loop:

     Initialization code 

          Loop body 

     Test for termination 

     Code following the loop

while loop:

     Initialization code

     Loop termination test

          Loop body

          Jump back to test

     Code following the loop
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forever..endfor loop:

     Initialization code

          Loop body part one

          Loop termination test

          Loop body part two

          Jump back to Loop body part one

     Code following the loop 

As you can see, the repeat..until loop is the simplest of the bunch. This is 
reflected in the assembly language implementation of these loops. Consider 
the following repeat..until and while loops that are semantically identical:

// Example involving a WHILE loop:

     mov( edi, esi );

     sub( 20, esi );

     while( esi <= edi ) do

          << stmts >>

          inc( esi );

     endwhile;

// Conversion of the code above into pure assembly language:

     mov( edi, esi );

     sub( 20, esi );

     whlLbl:

     cmp( esi, edi );

     jnle EndOfWhile;

          << stmts >>

          inc( esi );

          << stmts >>

          jmp whlLbl;

     EndOfWhile:

// Example involving a REPEAT..UNTIL loop:

     mov( edi, esi );

     sub( 20, esi );

     repeat

          << stmts >>

          inc( esi );

     until( esi > edi );

The Art of Assembly Language, 2nd Edition
(C) 2010 by Randall Hyde



468 Chapte r  7

// Conversion of the REPEAT..UNTIL loop into pure assembly:

     rptLabel:

          << stmts >>

          inc( esi );

          cmp( esi, edi );

          jng rptLabel;

As you can see by carefully studying the conversion to pure assembly lan-
guage, testing for the termination condition at the end of the loop allowed us 
to remove a jmp instruction from the loop. This can be significant if this loop 
is nested inside other loops. In the preceding example there wasn’t a problem 
with executing the body at least once. Given the definition of the loop, you 
can easily see that the loop will be executed exactly 20 times. This suggests 
that the conversion to a repeat..until loop is trivial and always possible. Unfor-
tunately, it’s not always quite this easy. Consider the following HLA code:

     while( esi <= edi ) do

          << stmts >> 

          inc( esi );

     endwhile;

In this particular example, we haven’t the slightest idea what ESI contains 
upon entry into the loop. Therefore, we cannot assume that the loop body 
will execute at least once. So we must test for loop termination before execut-
ing the body of the loop. The test can be placed at the end of the loop with 
the inclusion of a single jmp instruction:

     jmp WhlTest;

     TopOfLoop:

          << stmts >>

          inc( esi );

     WhlTest:

          cmp( esi, edi );

          jle TopOfLoop;

Although the code is as long as the original while loop, the jmp instruction 
executes only once rather than on each repetition of the loop. Note that this 
slight gain in efficiency is obtained via a slight loss in readability. The second 
code sequence above is closer to spaghetti code than the original implemen-
tation. Such is often the price of a small performance gain. Therefore, you 
should carefully analyze your code to ensure that the performance boost is 
worth the loss of clarity. More often than not, assembly language programmers 
sacrifice clarity for dubious gains in performance, producing impossible-to-
understand programs.

Note, by the way, that HLA translates its high-level while statement into a 
sequence of instructions that test the loop termination condition at the bottom 
of the loop using exactly the technique this section describes.
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7.11.2 Executing the Loop Backwards

Because of the nature of the flags on the 80x86, loops that repeat from some 
number down to (or up to) 0 are more efficient than loops that execute from 0 
to some other value. Compare the following HLA for loop and the code it 
generates:

for( mov( 1, j ); j <= 8; inc( j ) ) do

     << stmts >>

endfor;

// Conversion to pure assembly (as well as using a REPEAT..UNTIL form):

mov( 1, j );

ForLp:

     << stmts >>

     inc( j );

     cmp( j, 8 );

     jnge ForLp;

Now consider another loop that also has eight iterations but runs its loop-
control variable from 8 down to 1 rather than 1 up to 8:

mov( 8, j );

LoopLbl:

     << stmts >>

     dec( j );

     jnz LoopLbl;

Note that by running the loop from 8 down to 1 we saved a comparison 
on each repetition of the loop.

Unfortunately, you cannot force all loops to run backward. However, with 
a little effort and some coercion you should be able to write many for loops so 
that they operate backward. Saving the execution time of the cmp instruction 
on each iteration of the loop may result in faster code.

The example above worked out well because the loop ran from 8 down to 1. 
The loop terminated when the loop-control variable became 0. What hap-
pens if you need to execute the loop when the loop-control variable goes to 0? 
For example, suppose that the loop above needed to range from 7 down to 0. 
As long as the upper bound is positive, you can substitute the jns instruction 
in place of the jnz instruction in the earlier code:

mov( 7, j );

LoopLbl:

     << stmts >>

     dec( j );

     jns LoopLbl;

This loop will repeat eight times, with j taking on the values 7..0. When it 
decrements 0 to 1, it sets the sign flag and the loop terminates.
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Keep in mind that some values may look positive but are actually nega-
tive. If the loop-control variable is a byte, then values in the range 128..255 are 
negative in the two’s complement system. Therefore, initializing the loop-
control variable with any 8-bit value in the range 129..255 (or, of course, 0) 
terminates the loop after a single execution. This can get you into trouble if 
you’re not careful.

7.11.3 Loop-Invariant Computations  

A loop-invariant computation is some calculation that appears within a loop that 
always yields the same result. You needn’t do such computations inside the 
loop. You can compute them outside the loop and reference the value of the 
computations inside the loop. The following HLA code demonstrates an 
invariant computation:

     for( mov( 0, eax ); eax < n; inc( eax )) do

          mov( eax, edx );

          add( j, edx );

          sub( 2, edx );

          add( edx, k );

     endfor;

Because j never changes throughout the execution of this loop, the sub-
expression j-2 can be computed outside the loop:

     mov( j, ecx );

     sub( 2, ecx );

     for( mov( 0, eax ); eax < n; inc( eax )) do

          mov( eax, edx );

          add( ecx, edx );

          add( edx, k );

     endfor;

Although we’ve eliminated a single instruction by computing the sub-
expression j-2 outside the loop, there is still an invariant component to this 
calculation. Note that this invariant component executes n times in the loop; 
this means that we can translate the previous code to the following:

     mov( j, ecx );

     sub( 2, ecx );

     intmul( n, ecx );   // Compute n*(j-2) and add this into k outside

     add( ecx, k );      // the loop.

     for( mov( 0, eax ); eax < n; inc( eax )) do
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          add( eax, k );

     endfor;

As you can see, we’ve shrunk the loop body from four instructions down 
to one. Of course, if you’re really interested in improving the efficiency of this 
particular loop, you can compute the result without using a loop at all (there 
is a formula that corresponds to the iterative calculation above). Still, this 
simple example demonstrates elimination of loop-invariant calculations from 
a loop.

7.11.4 Unraveling Loops  

For small loops, that is, those whose body is only a few statements, the over-
head required to process a loop may constitute a significant percentage of the 
total processing time. For example, look at the following Pascal code and its 
associated 80x86 assembly language code:

     for i := 3 downto 0 do A[i] := 0;

     mov( 3, i );

     LoopLbl:

          mov( i, ebx );

          mov( 0, A[ ebx*4 ] );

          dec( i );

          jns LoopLbl;

Four instructions execute on each repetition of the loop. Only one 
instruction is doing the desired operation (moving a 0 into an element of A). The 
remaining three instructions control the loop. Therefore, it takes 16 instructions 
to do the operation logically required by 4.

While there are many improvements we could make to this loop based on 
the information presented thus far, consider carefully exactly what it is that 
this loop is doing—it’s storing four 0s into A[0] through A[3]. A more efficient 
approach is to use four mov instructions to accomplish the same task. For 
example, if A is an array of double words, then the following code initializes A
much faster than the code above:

     mov( 0, A[0] );

     mov( 0, A[4] );

     mov( 0, A[8] );

     mov( 0, A[12] );

Although this is a simple example, it shows the benefit of loop unraveling
(also known as loop unrolling). If this simple loop appeared buried inside a set 
of nested loops, the 4:1 instruction reduction could possibly double the per-
formance of that section of your program.
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Of course, you cannot unravel all loops. Loops that execute a variable 
number of times are difficult to unravel because there is rarely a way to deter-
mine (at assembly time) the number of loop iterations. Therefore, unraveling 
a loop is a process best applied to loops that execute a known number of 
times (and the number of times is known at assembly time).

Even if you repeat a loop some fixed number of iterations, it may not be 
a good candidate for loop unraveling. Loop unraveling produces impressive per-
formance improvements when the number of instructions controlling the loop 
(and handling other overhead operations) represents a significant percentage of 
the total number of instructions in the loop. Had the previous loop contained 
36 instructions in the body (exclusive of the 4 overhead instructions), then 
the performance improvement would be, at best, only 10 percent (compared 
with the 300–400 percent it now enjoys). Therefore, the costs of unraveling 
a loop, that is, all the extra code that must be inserted into your program, 
quickly reach a point of diminishing returns as the body of the loop grows 
larger or as the number of iterations increases. Furthermore, entering that 
code into your program can become quite a chore. Therefore, loop unravel-
ing is a technique best applied to small loops.

Note that the superscalar 80x86 chips (Pentium and later) have branch-
prediction hardware and use other techniques to improve performance. Loop 
unrolling on such systems may actually slow down the code because these pro-
cessors are optimized to execute short loops.

7.11.5 Induction Variables 

Consider the following loop:

     for i := 0 to 255 do csetVar[i] := {};

Here the program is initializing each element of an array of character sets 
to the empty set. The straightforward code to achieve this is the following:

mov( 0, i );

FLp:

     // Compute the index into the array (note that each element

     // of a CSET array contains 16 bytes).

     mov( i, ebx );

     shl( 4, ebx );

     // Set this element to the empty set (all 0 bits).

     mov( 0, csetVar[ ebx ] );

     mov( 0, csetVar[ ebx+4 ] );

     mov( 0, csetVar[ ebx+8 ] );

     mov( 0, csetVar[ ebx+12 ] );
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     inc( i );

     cmp( i, 256 );

     jb FLp;

Although unraveling this code will still produce a performance improve-
ment, it will take 1,024 instructions to accomplish this task, too many for all 
but the most time-critical applications. However, you can reduce the execution 
time of the body of the loop using induction variables. An induction variable is 
one whose value depends entirely on the value of some other variable. In the 
example above, the index into the array csetVar tracks the loop-control variable 
(it’s always equal to the value of the loop-control variable times 16). Because 
i doesn’t appear anywhere else in the loop, there is no sense in performing 
the computations on i. Why not operate directly on the array index value? 
The following code demonstrates this technique:

mov( 0, ebx );

FLp:

     mov( 0, csetVar[ ebx ]);

     mov( 0, csetVar[ ebx+4 ] );

     mov( 0, csetVar[ ebx+8 ] );

     mov( 0, csetVar[ ebx+12 ] );

     add( 16, ebx );

     cmp( ebx, 256*16 );

     jb FLp;

The induction that takes place in this example occurs when the code 
increments the loop-control variable (moved into EBX for efficiency reasons) 
by 16 on each iteration of the loop rather than by 1. Multiplying the loop-
control variable by 16 (and also the final loop-termination constant value) 
allows the code to eliminate multiplying the loop-control variable by 16 on 
each iteration of the loop (that is, this allows us to remove the shl instruction 
from the previous code). Further, because this code no longer refers to the 
original loop-control variable (i), the code can maintain the loop-control 
variable strictly in the EBX register.

7.12 Hybrid Control Structures in HLA

The HLA high-level language control structures have a few drawbacks: 
(1) they’re not true assembly language instructions, (2) complex boolean 
expressions support only short-circuit evaluation, and (3) they often intro-
duce inefficient coding practices into a language that most people use only 
when they need to write high-performance code. On the other hand, while 
the 80x86 low-level control structures let you write efficient code, the result-
ing code is very difficult to read and maintain. HLA provides a set of hybrid 
control structures that allow you to use pure assembly language statements to 
evaluate boolean expressions while using the high-level control structures to 
delineate the statements controlled by the boolean expressions. The result is 
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code that is much more readable than pure assembly language without being 
a whole lot less efficient.

HLA provides hybrid forms of the if..elseif..else..endif, while..endwhile,
repeat..until, breakif, exitif, and continueif statements (that is, those that 
involve a boolean expression). For example, a hybrid if statement takes the 
following form:

     if( #{ instructions }# ) then statements endif;

Note the use of #{ and }# operators to surround a sequence of instruc-
tions within this statement. This is what differentiates the hybrid control 
structures from the standard high-level language control structures. The 
remaining hybrid control structures take the following forms:

while( #{ statements }# ) statements endwhile;

repeat statements until( #{ statements }# );

breakif( #{ statements }# );

exitif( #{ statements }# );

continueif( #{ statements }# );

The statements within the curly braces replace the normal boolean 
expression in an HLA high-level control structure. These particular statements 
are special insofar as HLA defines two pseudo-labels, true and false, within 
their context. HLA associates the label true with the code that would normally 
execute if a boolean expression were present and that expression’s result was 
true. Similarly, HLA associates the label false with the code that would exe-
cute if a boolean expression in one of these statements evaluated false. As a 
simple example, consider the following two (equivalent) if statements:

if( eax < ebx ) then inc( eax ); endif;

if

( #{

     cmp( eax, ebx );

     jnb false;

}# ) then

     inc( eax );

endif;

The jnb that transfers control to the false label in this latter example will 
skip over the inc instruction if EAX is not less than EBX. Note that if EAX is 
less than EBX, then control falls through to the inc instruction. This is roughly 
equivalent to the following pure assembly code:

cmp( eax, ebx );

jnb falseLabel;

     inc( eax );

falseLabel:
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As a slightly more complex example, consider the statement

if( eax >= j && eax <= k ) then sub( j, eax ); endif;

The following hybrid if statement accomplishes the above:

if

( #{

     cmp( eax, j );

     jnae false;

     cmp( eax, k );

     jnae false;

}# ) then

     sub( j, eax );

endif;

As one final example of the hybrid if statement, consider the following:

// if( ((eax > ebx) && (eax < ecx)) || (eax = edx)) then

// mov( ebx, eax ); 

// endif;

if

( #{

     cmp( eax, edx );

     je true;

     cmp( eax, ebx );

     jng false;

     cmp( eax, ecx );

     jnb false;

}# ) then

     mov( ebx, eax );

endif;

Because these examples are rather trivial, they don’t really demonstrate 
how much more readable the code can be when using hybrid statements 
rather than pure assembly code. However, one thing you should notice is that 
using hybrid statements eliminates the need to insert labels throughout your 
code. This can make your programs easier to read and understand.

For the if statement, the true label corresponds to the then clause of the 
statement; the false label corresponds to the elseif, else, or endif clause (which-
ever follows the then clause). For the while loop, the true label corresponds to 
the body of the loop, whereas the false label is attached to the first statement 
following the corresponding endwhile. For the repeat..until statement, the 
true label is attached to the code following the until clause, whereas the false
label is attached to the first statement of the body of the loop. The breakif,
exitif, and continueif statements associate the false label with the statement 
immediately following one of these statements; they associate the true label 
with the code normally associated with a break, exit, or continue statement.
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7.13 For More Information

HLA contains a few additional high-level control structures beyond those this 
chapter describes. Examples include the try..endtry block and the foreach
statement. A discussion of these statements does not appear in this chapter 
because these are advanced control structures and their implementation is 
too complex to describe this early in the text. For more information on their 
implementation, see the electronic edition at http://www.artofasm.com/ (or 
http://webster.cs.ucr.edu/) or the HLA reference manual.
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