

T O E R R I S
H U M A N

Dealing with the Inevitable—
Error Conditions in Code

6

In this chapter:

� The types of errors we
encounter

� Dealing with errors correctly

� How to raise errors

� Learning to program in the
face of uncertainty

We know that the only way to avoid error is to detect it,
that the only way to detect it is to be free to enquire.

—J. Robert Oppenheimer

At some point in life, everyone has this epiphany:
The world doesn’t work as you expect it to. My one-year-
old friend Tom learned this when climbing a chair
four times his size. He expected to get to the top.
The actual result surprised him: He ended up
under a pile of furniture.

Is the world broken? Is it wrong? No. The
world has plodded happily along its way for the
last few million years and looks set to continue
for the foreseeable future. It’s our expectations that
are wrong and need to be adjusted. As they say:
Bad things happen, so deal with it. We must write
code that deals with the Real World and its
unexpected ways.

This is particularly difficult because the world
mostly works as we’d expect it to, constantly lulling
us into a false sense of security. The human brain is

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

90 Chapter 6

wired to cope, with built-in fail-safes. If someone bricks up your front door,
your brain will process the problem, and you’ll stop before walking into an
unexpected wall. But programs are not so clever; we have to tell them where
the brick walls are and what to do when they hit one.

Don’t presume that everything in your program will always run smoothly.
The world doesn’t always work as you’d expect it to: You must handle all
possible error conditions in your code. It sounds simple enough, but that
statement leads to a world of pain.

From Whence It Came

To expect the unexpected shows
a thoroughly modern intellect.

—Oscar Wilde

Errors can and will occur. Undersirable results can arise from almost any
operation. They are distinct from bugs in a faulty program because you know
beforehand that an error can occur. For example, the database file you want
to open might have been deleted, a disk could fill up at any time and your
next save operation might fail, or the web service you’re accessing might not
currently be available.

If you don’t write code to handle these error conditions, you will almost
certainly end up with a bug; your program will not always work as you intend
it to. But if the error happens only rarely, it will probably be a very subtle bug!
We’ll look at bugs in Chapter 9.

An error may occur for one of a thousand reasons, but it will fall into one
of these three categories:

User error
The stupid user manhandled your lovely program. Perhaps he provided
the wrong input or attempted an operation that’s absolutely absurd.
A good program will point out the mistake and help the user rectify it.
It won’t insult him or whine in an incomprehensible manner.

Programmer error
The user pushed all the right buttons, but the code is broken. This is the
consequence of a bug elsewhere, a fault the programmer introduced
that the user can do nothing about (except to try and avoid it in the
future). This kind of error should (ideally) never occur.

There’s a cycle here: Unhandled errors can cause bugs. And those
bugs might result in further error conditions occurring elsewhere in your
code. This is why we consider defensive programming an important
practice.

Exceptional circumstances
The user pushed all the right buttons, and the programmer didn’t mess up.
Fate’s fickle finger intervened, and we ran into something that couldn’t be
avoided. Perhaps a network connection failed, we ran out of printer ink,
or there’s no hard disk space left.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

To Er r Is Human 91

We need a well-defined strategy to manage each kind of error in our code.
An error may be detected and reported to the user in a pop-up message box,
or it may be detected by a middle-tier code layer and signaled to the client
code programmatically. The same principles apply in both cases: whether a
human chooses how to handle the problem or your code makes a decision—
someone is responsible for acknowledging and acting on errors.

KEY CONCEPT Take error handling seriously. The stability of your code rests on it.

Errors are raised by subordinate components and communicated upward,
to be dealt with by the caller. They are reported in a number of ways; we’ll
look at these in the next section. To take control of program execution, we
must be able to:

� Raise an error when something goes wrong

� Detect all possible error reports

� Handle them appropriately

� Propagate errors we can’t handle

Errors are hard to deal with. The error you encounter is often not
related to what you were doing at the time (most fall under the “exceptional
circumstances” category). They are also tedious to deal with—we want to
focus on what our program should be doing, not on how it may go wrong.
However, without good error management, your program will be brittle—
built upon sand, not rock. At the first sign of wind or rain, it will collapse.

Error-Reporting Mechanisms

There are several common strategies for propagating error information to
client code. You’ll run into code that uses each of them, so you must know
how to speak every dialect. Observe how these error-reporting techniques
compare, and notice which situations call for each mechanism.

Each mechanism has different implications for the locality of error. An error
is local in time if it is discovered very soon after it is created. An error is local
in space if it is identified very close to (or even at) the site where it actually
manifests. Some approaches specifically aim to reduce the locality of error to
make it easier to see what’s going on (e.g., error codes). Others aim to extend
the locality of error so that normal code doesn’t get entwined with error-
handling logic (e.g., exceptions).

The favored reporting mechanism is often an architectural decision.
The architect might consider it important to define a homogeneous hierarchy
of exception classes or a central list of shared reason codes to unify error-
handling code.

No Reporting

The simplest error-reporting mechanism is don’t bother. This works wonderfully
in cases where you want your program to behave in bizarre and unpredictable
ways and to crash randomly.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

92 Chapter 6

If you encounter an error and don’t know what to do about it, blindly
ignoring it is not a viable option. You probably can’t continue the function’s
work, but returning without fulfilling your function’s contract will leave the
world in an undefined and inconsistent state.

KEY CONCEPT Never ignore an error condition. If you don’t know how to handle the problem, signal a
failure back up to the calling code. Don’t sweep an error under the rug and hope for the best.

An alternative to ignoring errors is to instantly abort the program upon
encountering a problem. It’s easier than handling errors throughout the code,
but hardly a well-engineered solution!

Return Values

The next most simple mechanism is to return a success/failure value from
your function. A boolean return value provides a simple yes or no answer.
A more advanced approach enumerates all the possible exit statuses and
returns a corresponding reason code. One value means success; the rest repre-
sent the many and varied abortive cases. This enumeration may be shared
across the whole codebase, in which case your function returns a subset of
the available values. You should therefore document what the caller can
expect.

While this works well for procedures that don’t return data, passing error
codes back with returned data gets messy. If int count() walks down a linked
list and returns the number of elements, how can it signify a list structure
corruption? There are three approaches:

� Return a compound data type (or tuple) containing both the return
value and an error code. This is rather clumsy in the popular C-like
languages and is seldom seen in them.

� Pass the error code back through a function parameter. In C++ or .NET,
this parameter would be passed by reference. In C you’d direct the vari-
able access through pointers. This approach is ugly and nonintuitive;
there is no syntactic way to distinguish a return value from a parameter.

� Alternatively, reserve a range of return values to signify failure. The count
example can nominate all negative numbers as error reason codes; they’d
be meaningless answers anyway. Negative numbers are a common choice
for this. Pointer return values may be given a specific invalid value, which
by convention is zero (or NULL). In Java and C#, you can return a null
object reference.

This technique doesn’t always work well. Sometimes it’s hard to
reserve an error range—all return values are equally meaningful and
equally likely. It also has the side effect of reducing the available range of
success values; the use of negative values reduces the possible positive
values by an order of magnitude.1

1 If you used an unsigned int then the number of values available would increase by a power of
two, reusing the signed int’s sign bit.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

To Er r Is Human 93

Error Status Variables

This method attempts to manage the contention between a function’s return
value and its error status report. Rather than return a reason code, the function
sets a shared global error variable. After calling the function, you must then
inspect this status variable to find out whether or not it completed successfully.

The shared variable reduces confusion and clutter in the function’s sig-
nature, and it doesn’t restrict the return value’s data range at all. However,
errors signaled through a separate channel are much easier to miss or willfully
ignore. A shared global variable also has nasty thread safety implications.

The C standard library employs this technique with its errno variable.
It has very subtle semantics: Before using any standard library facility, you
must manually clear errno. Nothing ever sets a succeeded value; only failures
touch errno. This is a common source of bugs, and it makes calling each library
function tedious. To add insult to injury, not all C standard library functions
use errno, so it is less than consistent.

This technique is functionally equivalent to using return values, but it
has enough disadvantages to make you avoid it. Don’t write your own error
reports this way, and use existing implementations with the utmost care.

Exceptions

Exceptions are a language facility for managing errors; not all languages sup-
port exceptions. Exceptions help to distinguish the normal flow of execution
from exceptional cases—when a function has failed and cannot honor its con-
tract. When your code encounters a problem that it can’t handle, it stops dead
and throws up an exception—an object representing the error. The language
run time then automatically steps back up the call stack until it finds some
exception-handling code. The error lands there, for the program to deal with.

There are two operational models, distinguished by what happens after
an exception is handled:

The termination model
Execution continues after the handler that caught the exception. This
behavior is provided by C++, .NET, and Java.

The resumption model
Execution resumes where the exception was raised.

The former model is easier to reason about, but it doesn’t give ultimate
control. It only allows error handling (you can execute code when you notice
an error), not fault rectification (a chance to fix the problem and try again).

An exception cannot be ignored. If it isn’t caught and handled, it will
propagate to the very top of the call stack and will usually stop the program
dead in its tracks. The language run time automatically cleans up as it unwinds

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

94 Chapter 6

the call stack. This makes exceptions a tidier and safer alternative to hand-
crafted error-handling code. However, throwing exceptions through sloppy
code can lead to memory leaks and problems with resource cleanup.2 You
must take care to write exception-safe code. The sidebar explains what this
means in more detail.

The code that handles an exception is distinct from the code that
raises it, and it may be arbitrarily far away. Exceptions are usually provided
by OO languages, where errors are defined by a hierarchy of exception classes.

2 For example, you could allocate a block of memory and then exit early as an exception
propagates through. The allocated memory would leak. This kind of problem makes writing
code in the face of exceptions a complex business.

W H I S T LE - S T O P T O U R O F E X C E P T I O N S A F E T Y

Resilient code must be exception safe. It must work correctly (for some definition of
correctly, which we’ll investigate below), no matter what exceptions come its way.
This is true regardless of whether or not the code catches any exceptions itself.

Exception-neutral code propagates all exceptions up to the caller; it won’t
consume or change anything. This is an important concept for generic programs like
C++ template code—the template types may generate all sorts of exceptions that
template implementors don’t understand.

There are several different levels of exception safety. They are described in terms
of guarantees to the calling code. These guarantees are:

Basic guarantee
If exceptions occur in a function (resulting from an operation you perform or the
call of another function), it will not leak resources. The code state will be consistent
(i.e., it can still be used correctly), but it will not necessarily leave in a known state.
For example: A member function should add 10 items to a container, but an
exception propagates through it. The container is still usable; maybe no objects
were inserted, maybe all 10 were, or perhaps every other object was added.

Strong guarantee
This is far more strict than the basic guarantee. If an exception propagates through
your code, the program state remains completely unchanged. No object is altered,
no global variables changed, nothing. In the example above, nothing was inserted
into the container.

Nothrow guarantee
The final guarantee is the most restrictive: that an operation can never throw an
exception. If we are exception neutral, then this implies the function cannot do
anything else that might throw an exception.

Which guarantee you provide is entirely your choice. The more restrictive
the guarantee, the more widely (re)usable the code is. In order to implement the
strong guarantee, you will generally need a number of functions providing the
nothrow guarantee.

Most notably, every destructor you write must honor the nothrow guarantee.*
Otherwise, all exception handling bets are off. In the presence of an exception,
object destructors are called automatically as the stack is unwound. Raising an
exception while handling an exception is not permissible.

*That’s the case in C++ and Java, at least. C# stupidly called ~X() a destructor, even though it
was a finalizer in disguise. Throwing an exception in a C# destructor has different implications.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

To Er r Is Human 95

A handler can elect to catch a quite specific class of error (by accepting a
leaf class) or a more general category of error (by accepting a base class).
Exceptions are particularly useful for signaling errors in a constructor.

Exceptions don’t come for free; the language support incurs a perfor-
mance penalty. In practice, this isn’t significant and only manifests around
exception-handling statements—exception handlers reduce the compiler’s
optimization opportunities. This doesn’t mean that exceptions are flawed;
their expense is justified compared to the cost of not doing any error handling!

Signals

Signals are a more extreme reporting mechanism, largely used for errors sent
by the execution environment to the running program. The operating system
traps a number of exceptional events, like a floating point exception triggered
by the maths coprocessor. These well-defined error events are delivered to
the application in signals that interrupt the program’s normal flow of execu-
tion, jumping into a nominated signal handler function. Your program could
receive a signal at any time, and the code must be able to cope with this. When
the signal handler completes, program execution continues at the point it was
interrupted.

Signals are the software equivalent of a hardware interrupt. They are a
Unix concept, now provided on most platforms (a basic version is part of the
ISO C standard [ISO99]). The operating system provides sensible default
handlers for each signal, some of which do nothing, others of which abort
the program with a neat error message. You can override these with your own
handler.

The defined C signal events include program termination, execution
suspend/continue requests, and math errors. Some environments extend
the basic list with many more events.

Detecting Errors

How you detect an error obviously depends on the mechanism reporting it.
In practical terms, this means:

Return values
You determine whether a function failed by looking at its return code.
This failure test is bound tightly to the act of calling the function;
by making the call, you are implicitly checking its success. Whether or
not you do anything with that information is up to you.

Error status variables
After calling a function, you must inspect the error status variable. If it
follows C’s errno model of operation, you don’t actually need to test for
errors after every single function call. First reset errno, and then call any
number of standard library functions back-to-back. Afterward, inspect
errno. If it contains an error value, then one of those functions failed.
Of course, you don’t know what fell over, but if you don’t care, then
this is a streamlined error-detection approach.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

96 Chapter 6

Exceptions
If an exception propagates out of a subordinate function, you can choose
to catch and handle it or to ignore it and let the exception flow up a level.
You can only make an informed choice when you know what kinds of
exceptions might be thrown. You’ll only know this if it has been docu-
mented (and if you trust the documentation).

Java’s exception implementation places this documentation in the
code itself. The programmer has to write an exception specification for every
method, describing what it can throw; it is a part of the function’s signa-
ture. Java is the only mainstream language to enforce this approach.
You cannot leak an exception that isn’t in the list, because the compiler
performs static checking to prevent it.3

Signals
There’s only one way to detect a signal: Install a hander for it. There’s no
obligation. You can also choose not to install any signal handlers at all
and accept the default behavior.

As various pieces of code converge in a large system, you will probably
need to detect errors in more than one way, even within a single function.
Whichever detection mechanism you use, the key point is this:

KEY CONCEPT Never ignore any errors that might be reported to you. If an error report channel exists,
it’s there for a reason.

It is good practice to always write error-detection scaffolding—even if
an error has no implication for the rest of your code. This makes it clear to a
maintenance programmer that you know a function may fail and have con-
sciously chosen to ignore any failures.

When you let an exception propagate through your code, you are not
ignoring it—you can’t ignore an exception. You are allowing it to be handled
by a higher level. The philosophy of exception handling is quite different in
this respect. It’s less clear what the most appropriate way to document this is—
should you write a try/catch block that simply rethrows the exception, should
you write a comment claiming that the code is exception safe, or should you
do nothing? I’d favor documenting the exception behavior.

Handling Errors

Love truth, and pardon error.
—Voltaire

Errors happen. We’ve seen how to discover them and when to do so. The
question now is: What do you do about them? This is the hard part. The
answer largely depends on circumstance and the gravity of an error—
whether it’s possible to rectify the problem and retry the operation or to
carry on regardless. Often there is no such luxury; the error may even

3 C++ also supports exception specifications, but leaves their use optional. It’s idiomatic to avoid
them—for performance reasons, among others. Unlike Java, they are enforced at run time.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

To Er r Is Human 97

herald the beginning of the end. The best you can do is clean up and
exit sharply, before anything else goes wrong.

To make this kind of decision, you must be informed. You need to know
a few key pieces of information about the error:

Where it came from
This is quite distinct from where it’s going to be handled. Is the source a
core system component or a peripheral module? This information may
be encoded in the error report; if not, you can figure it out manually.

What you were trying to do
What provoked the error? This may give a clue toward any remedial
action. Error reporting seldom contains this kind of information, but
you can figure out which function was called from the context.

Why it went wrong
What is the nature of the problem? You need to know exactly what
happened, not just a general class of error. How much of the erroneous
operation completed? All or none are nice answers, but generally, the
program will be in some indeterminate state between the two.

When it happened
This is the locality of the error in time. Has the system only just failed,
or is a problem two hours old finally being felt?

The severity of the error
Some problems are more serious than others, but when detected, one
error is equivalent to another—you can’t continue without understand-
ing and managing the problem. Error severity is usually determined by the
caller, based on how easy it will be to recover or work around the error.

How to fix it
This may be obvious (e.g., insert a floppy disk and retry) or not (e.g., you
need to modify the function parameters so they are consistent). More often
than not, you have to infer this knowledge from the other information
you have.

Given this depth of information, you can formulate a strategy to handle
each error. Forgetting to insert a handler for any potential error will lead to a
bug, and it might turn out to be a bug that is hard to exercise and hard to track
down—so think about every error condition carefully.

When to Deal with Errors

When should you handle each error? This can be separate from when it’s
detected. There are two schools of thought.

As soon as possible
Handle each error as you detect it. Since the error is handled near
to its cause, you retain important contextual information, making the
error-handling code clearer. This is a well-known self-documenting code

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

98 Chapter 6

technique. Managing each error near its source means that control
passes through less code in an invalid state.

This is usually the best option for functions that return error codes.

As late as possible
Alternatively, you could defer error handling for as long as possible. This
recognizes that code detecting an error rarely knows what to do about it.
It often depends on the context in which it is used: A missing file error
may be reported to the user when loading a document but silently swal-
lowed when hunting for a preferences file.

Exceptions are ideal for this; you can pass an exception through each
level until you know how to deal with the error. This separation of detec-
tion and handling may be clearer, but it can make code more complex.
It’s not obvious that you are deliberately deferring error handling, and
it’s not clear where an error came from when you do finally handle it.

In theory, it’s nice to separate “business logic” from error handling.
But often you can’t, as cleanup is necessarily entwined with that business
logic, and it can be more tortuous to write the two separately. However,
centralized error-handling code has advantages: You know where to look
for it, and you can put the abort/continue policy in one place rather than
scatter it through many functions.

Thomas Jefferson once declared, “Delay is preferable to error.” There is
truth there; the actual existence of error handling is far more important than
when an error is handled. Nevertheless, choose a compromise that’s close
enough to prevent obscure and out-of-context error handling, while being
far enough away to not cloud normal code with roundabout paths and error
handling dead ends.

KEY CONCEPT Handle each error in the most appropriate context, as soon as you know enough about
it to deal with it correctly.

Possible Reactions

You’ve caught an error. You’re poised to handle it. What are you going to do
now? Hopefully, whatever is required for correct program operation. While
we can’t list every recovery technique under the sun, here are the common
reactions to consider.

Logging
Any reasonably large project should already be employing a logging
facility. It allows you to collect important trace information, and is an
entry point for the investigation of nasty problems.

The log exists to record interesting events in the life of the program,
to allow you to delve into its inner workings and reconstruct paths of
execution. For this reason, all errors you encounter should be detailed
in the program log; they are some of the most interesting and telling
events of all. Aim to capture all pertinent information—as much of the
previous list as you can.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

To Er r Is Human 99

For really obscure errors that predict catastrophic disaster, it may be
a good idea to get the program to “phone home”—to transmit either a
snapshot of itself or a copy of the error log to the developers for further
investigation.

What you do after logging is another matter.

Reporting
A program should only report an error to the user when there’s nothing
left to do. The user does not need to be bombarded by a thousand small
nuggets of useless information or badgered by a raft of pointless questions.
Save the interaction for when it’s really vital. Don’t report when you
encounter a recoverable situation. By all means, log the event, but keep
quiet about it. Provide a mechanism that enables users to read the event
log if you think one day they might care.

There are some problems that only the user can fix. For these, it is
good practice to report the problem immediately, in order to allow the
user the best chance to resolve the situation or else decide how to
continue.

Of course, this kind of reporting depends on whether or not the
program is interactive. Deeply embedded systems are expected to cope
on their own; it’s hard to pop up a dialog box on a washing machine.

Recovery
Sometimes your only course of action is to stop immediately. But not all
errors spell doom. If your program saves a file, one day the disk will fill
up, and the save operation will fail. The user expects your program to
continue happily, so be prepared.

If your code encounters an error and doesn’t know what to do about
it, pass the error upward. It’s more than likely your caller will have the
ability to recover.

Ignore
I only include this for completeness. Hopefully by now you’ve learned to
scorn the very suggestion of ignoring an error. If you choose to forget all
about handling it and to just continue with your fingers crossed, good luck.
This is where most of the bugs in any software package will come from.
Ignoring an error whose occurrence may cause the system to misbehave
inevitably leads to hours of debugging.

You can, however, write code that allows you to do nothing when an
error crops up. Is that a blatant contradiction? No. It is possible to write
code that copes with an inconsistent world, that can carry on correctly
in the face of an error—but it often gets quite convoluted. If you adopt
this approach, you must make it obvious in the code. Don’t risk having
it misinterpreted as ignorant and incorrect.

KEY CONCEPT Ignoring errors does not save time. You’ll spend far longer working out the cause of bad
program behavior than you ever would have spent writing the error handler.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

100 Chap te r 6

Propagate
When a subordinate function call fails, you probably can’t carry on, but
you might not know what else to do. The only option is to clean up and
propagate the error report upward. You have options. There are two
ways to propagate an error:

� Export the same error information you were fed (return the same
reason code or propagate exceptions).

� Reinterpret the information, sending a more meaningful message to
the next level up (return a different reason code or catch and wrap
up exceptions).

Ask yourself this question: Does the error relate to a concept exposed
through the module interface? If so, it’s okay to propagate that same error.
Otherwise, recast it in the appropriate light, choosing an error report that
makes sense in the context of your module’s interface. This is a good
self-documenting code technique.

Code Implications
Show me the code! Let’s spend some time investigating the implications of error
handling in our code. As we’ll see, it is not easy to write good error handling
that doesn’t twist and warp the underlying program logic.

The first piece of code we’ll look at is a common error handling structure.
Yet it isn’t a particularly intelligent approach for writing error-tolerant code.
The aim is to call three functions sequentially—each of which may fail—and
perform some intermediate calculations along the way. Spot the problems
with this:

void nastyErrorHandling()

{

if (operationOne())

{

... do something ...

if (operationTwo())

{

... do something else ...

if (operationThree())

{

... do more ...

}

}

}

}

Syntactically it’s fine; the code will work. Practically, it’s an unpleasant style
to maintain. The more operations you need to perform, the more deeply
nested the code gets and the harder it is to read. This kind of error handling
quickly leads to a rat’s nest of conditional statements. It doesn’t reflect the
actions of the code very well; each intermediate calculation could be con-
sidered the same level of importance, yet they are nested at different levels.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

To Er r I s Human 101

Can we avoid these problems? Yes—there are a few alternatives. The first
variant flattens the nesting. It is semantically equivalent, but it introduces
some new complexity, since flow control is now dependent on the value of a
new status variable, ok:

void flattenedErrorHandling()

{

bool ok = operationOne();

if (ok)

{

... do something ...

ok = operationTwo();

}

if (ok)

{

... do something else ...

ok = operationThree();

}

if (ok)

{

... do more ...

}

C R A F T I N G E R R O R M E S S A G E S

Inevitably, your code will encounter errors that the user must sort out. Human interven-
tion may be the only option; your code can’t insert a floppy disk or switch on the
printer by itself. (If it can, you’ll make a fortune!)

If you’re going to whine at the user, there are a few general points to bear in mind:

• Users don’t think like programmers, so present information the way they’d expect.
When displaying the free space on a disk, you might report Disk space: 10K.
But if there’s no space left, a zero could be misread as OK—and the user will not be
able to fathom why he can’t save a file when the program says everything’s fine.

• Make sure your messages aren’t too cryptic. You might understand them, but can
your computer-illiterate granny? (It doesn’t matter if your granny won’t use this
program—someone with a lower intellect almost certainly will.)

• Don’t present meaningless error codes. No user knows what to do when faced
with an Error code 707E. It is, however, valuable to provide such codes as
“additional info”—they can be quoted to tech support or looked up more easily
on a web search.

• Distinguish dire errors from mere warnings. Incorporate this information in the
message text (perhaps with an Error: prefix), and emphasize it in message boxes
with an accompanying icon.

• Only ask a question (even a simple one like Continue: Yes/No?) if the user fully
understands the ramifications of each choice. Explain it if necessary, and make
it clear what the consequence of each answer is.

What you present to the user will be determined by interface constraints and
application or OS style guides. If your company has user interface engineers, then
it’s their job to make these decisions. Work with them.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

102 Chap te r 6

if (!ok)

{

... clean up after errors ...

}

}

We’ve also added an opportunity to clean up after any errors. Is that
sufficient to mop up all failures? Probably not; the necessary cleanup may
depend on how far we got through the function before lightning struck.
There are two cleanup approaches:

� Perform a little cleanup after each operation that may fail, then return
early. This inevitably leads to duplication of cleanup code. The more work
you’ve done, the more you have to clean up, so each exit point will need
to do gradually more unpicking.

If each operation in our example allocates some memory, each early-
exit point will have to release all allocations made to date. The further
in, the more releases. That will lead to some quite dense and repetitive
error-handling code, which makes the function far larger and far harder
to understand.

� Write the cleanup code once, at the end of the function, but write it in such
a way as to only clean up what’s dirty. This is neater, but if you inadvertently
insert an early return in the middle of the function, the cleanup code will
be bypassed.

If you’re not overly concerned about writing Single Entry, Single Exit (SESE)
functions, this next example removes the reliance on a separate control flow
variable.4 We do lose the cleanup code again, though. Simplicity renders this
a better description of the actual intent:

void shortCircuitErrorHandling()

{

if (!operationOne()) return;

... do something ...

if (!operationTwo()) return;

... do something else ...

if (!operationThree()) return;

... do more ...

}

A combination of this short-circuit exit with the requirement for cleanup
leads to the following approach, especially seen in low-level systems code.
Some people advocate it as the only valid use for the maligned goto. I’m still
not convinced.

4 Although this clearly isn’t SESE, I contend that the previous example isn’t, either. There is only
one exit point, at the end, but the contrived control flow is simulating early exit—it might as well
have multiple exits. This is a good example of how being bound by a rule like SESE can lead to
bad code, unless you think carefully about what you’re doing.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

To Er r I s Human 103

void gotoHell()

{

if (!operationOne()) goto error;

... do something ...

if (!operationTwo()) goto error;

... do something else ...

if (!operationThree()) goto error;

... do more ...

return;

error:

... clean up after errors ...

}

You can avoid such monstrous code in C++ using Resource Acquisition Is
Initialization (RAII) techniques like smart pointers. (Stroustrup 97) This has
the bonus of providing exception safety—when an exception terminates
your function prematurely, resources are automatically deallocated. These
techniques avoid a lot of the problems we’ve seen above, moving complexity
to a separate flow of control.

The same example using exceptions would look like this (in C++, Java,
and C#), presuming that all subordinate functions do not return error codes
but instead throw exceptions:

void exceptionalHandling()

{

try

{

operationOne();

... do something ...

operationTwo();

... do something else ...

operationThree();

... do more ...

}

catch (...)

{

... clean up after errors ...

}

}

This is only a basic exception example, but it shows just how neat excep-
tions can be. A sound code design might not need the try/catch block at all
if it ensures that no resource is leaked and leaves error handling to a higher
level. But alas, writing good code in the face of exceptions requires an under-
standing of principles beyond the scope of this chapter.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

104 Chap te r 6

Raising Hell

We’ve put up with other people’s errors for long enough. It’s time to turn
the tables and play the bad guy: Let’s raise some errors. When writing a
function, erroneous things will happen that you’ll need to signal to your
caller. Make sure you do—don’t silently swallow any failure. Even if you’re
sure that the caller won’t know what to do in the face of the problem, it
must remain informed. Don’t write code that lies and pretends to be doing
something it’s not.

Which reporting mechanism should you use? It’s largely an architectural
choice; obey the project conventions and the common language idioms. In
languages with the facility, it is common to favor exceptions, but only use them
if the rest of the project does. Java and C# really leave you with no choice;
exceptions are buried deep in their execution run times. A C++ architecture
may choose to forego this facility to achieve portability with platforms that
have no exception support or to interface with older C code.

We’ve already seen strategies for propagating errors from subordinate
function calls. Our main concern here is reporting fresh problems encountered
during execution. How you determine these errors is your own business, but
when reporting them, consider the following:

� Have you cleaned up appropriately first? Reliable code doesn’t leak
resources or leave the world in an inconsistent state, even when an
error occurs, unless it’s really unavoidable. If you do either of these
things, it must be documented carefully. Consider what will happen
the next time your code is called if this error has manifested. Ensure
it will still work.

� Don’t leak inappropriate information to the outside world in your error
reports. Only return useful information that the caller understands and
can act on.

� Use exceptions correctly. Don’t throw an exception for unusual return
values—the rare but not erroneous cases. Only use exceptions to signal
circumstances where a function is not able to meet its contract. Don’t
use them non-idiomatically (i.e., for flow control).

� Consider using assertions (see “Constraints” on page 16) if you’re
trapping an error that should never happen in the normal course of
program execution, a genuine programming error. Exceptions are a
valid choice for this too—some assertion mechanisms can be config-
ured to throw exceptions when they trigger.

� If you can pull forward any tests to compile time, then do so. The sooner
you detect and rectify an error, the less hassle it can cause.

� Make it hard for people to ignore your errors. Given half a chance, some-
one will use your code badly. Exceptions are good for this—you have to
act deliberately to hide an exception.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

To Er r I s Human 105

What kind of errors should you be looking out for? This obviously depends
on what the function is doing. Here’s a checklist of the general kinds of error
checks you should make in each function:

� Check all function parameters. Ensure you have been given correct
and consistent input. Consider using assertions for this, depending on
how strictly your contract was written. (Is it an offense to supply bad
parameters?)

� Check that invariants are satisfied at interesting points in execution.

� Check all values from external sources for validity before you use them. File
contents and interactive input must be sensible, with no missing pieces.

� Check the return status of all system and other subordinate function calls.

Managing Errors

The common principle uniting the raising and handling of errors is to have a
consistent strategy for dealing with failure, wherever it manifests. These are
general considerations for managing the occurrence, detection, and handling
of program errors:

� Avoid things that could cause errors. Can you do something that is
guaranteed to work, instead? For example, avoid allocation errors by
reserving enough resource beforehand. With an assured pool of mem-
ory, your routine cannot suffer memory restrictions. Naturally, this will
only work when you know how much resource you need up front, but
you often do.

� Define the program or routine’s expected behavior under abnormal
circumstances. This determines how robust the code needs to be and
therefore how thorough your error handling should be. Can a function
silently generate bad output, subscribing to the historic GIGO principle?5

A N E X C E P T I O N T O T H E R U L E

Exceptions are a powerful error reporting mechanism. Used well, they can simplify
your code greatly while helping you to write robust software. In the wrong hands,
though, they are a deadly weapon.

I once worked on a project where it was routine for programmers to break a
while loop or end recursion by throwing an exception, using it as a non-local goto.
It’s an intersting idea, and kind of cute when you first see it. But this behavior is nothing
more than an abuse of exceptions: It isn’t what exceptions are idiomatically used for.
More than one critical bug was caused by a maintenance programmer not under-
standing the flow of control through a complex, magically terminated loop.

Follow the idioms of your language, and don’t write cute code for the sake of it.

5 That is, Garbage In, Garbage Out—feed it trash, and it will happily spit out trash.

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

106 Chap te r 6

� Clearly define which components are responsible for handling which
errors. Make it explicit in the module’s interface. Ensure that your client
knows what will always work and what may one day fail.

� Check your programming practice: When do you write error-handling
code? Don’t put it off until later; you’ll forget to handle something. Don’t
wait until your development testing highlights problems before writing
handlers—that’s not an engineering approach.

KEY CONCEPT Write all error detection and handling now, as you write the code that may fail. Don’t
put it off until later. If you must be evil and defer handling, at least write the detection
scaffolding now.

� When trapping an error, have you found a symptom or a cause? Consider
whether you’ve discovered the source of a problem that needs to be rec-
tified here or if you’ve discovered a symptom of an earlier problem. If it’s
the latter, then don’t write reams of handling code here, put that in a more
appropriate (earlier) error handler.

In a Nutshell

To err is human; to repent, divine; to persist, devilish.
—Benjamin Franklin

To err is human (but computers seem quite good at it, too). To handle these
errors is divine.

Every line of code you write must be balanced by appropriate and
thorough error checking and handling. A program without rigorous error
handling will not be stable. One day an obscure error may occur, and the
program will fall over as a result.

Handling errors and failure cases is hard work. It bogs programming
down in the mundane details of the Real World. However, it’s absolutely
essential. As much as 90 percent of the code you write handles exceptional
circumstances. (Bentley 82) That’s a surprising statistic, so write code expecting
to put far more effort into the things that can go wrong than the things that
will go right.

Good programmers . . . Bad programmers . . .

� Combine their good
intentions with good
coding practices

� Write the error-handling code
as they write the main code

� Are thorough in the code they
write, covering every error
possibility

� Take a haphazard approach to
writing code, with neither thought
to nor review of what they’re doing

� Ignore the errors that arise as they
write code

� End up conducting lengthy
debugging sessions to track down
program crashes, because they
never considered error conditions in
the first place

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

To Er r I s Human 107

See Also

Chapter 1: On the Defensive
Handing errors in context is one of the many defensive programming
techniques.

Chapter 4: The Write Stuff
Self-documenting code ensures that error handling is integral to the
code narrative.

Chapter 9: Finding Fault
Unhandled error conditions will manifest as bugs in the code. Here’s
how to squash them. (It’s best to avoid them in the first place, though.)

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 487.

Mull It Over

1. Are return values and exceptions equivalent error reporting mechanisms?
Prove it.

2. What different implementations of tuple return types can you think of?
Don’t limit yourself to a single programming language. What are the
pros and cons of using tuples as a return value?

3. How do exception implementations differ between languages?

4. Signals are an old-school Unix mechanism. Are they still needed now
that we have modern techniques like exceptions?

5. What is the best code structure for error handling?

6. How should you handle errors that occur in your error-handling code?

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

108 Chap te r 6

Getting Personal

1. How thorough is the error handling in your current codebase? How does
this contribute to the stability of the program?

2. Do you naturally consider error handling as you write code, or do you
find it a distraction, preferring to come back to it later?

3. Go to the last (reasonably sized) function you wrote or worked on, and
perform a careful review of the code. Find every abnormal occurence
and potential error situation. How many of these were actually handled
in your code?

Now get someone else to review it. Don’t be shy! Did they find any
more? Why? What does this tell you about the code you’re working on?

4. Do you find it easier to manage and reason about error conditions using
return values or exceptions? Are you sure you know what is involved in writ-
ing exception-safe code?

From Code Craft
No Starch Press, Copyright © 2006 by Pete Goodliffe

