
2
A B R I E F I N T R O D U C T I O N T O T H E

G N U A U T O T O O L S

As stated in the preface to this book, the
purpose of the GNU Autotools is to make

life simpler for the end user, not the main-
tainer. Nevertheless, using the Autotools will

make your job as a project maintainer easier in the
long run, although maybe not for the reasons you sus-
pect. The Autotools framework is as simple as it can
be, given the functionality it provides. The real purpose of the Autotools
is twofold: it serves the needs of your users, and it makes your project
incredibly portable—even to systems on which you’ve never tested,
installed, or built your code.

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started

And know the place for the first time.
—T.S. Eliot, “Quartet No. 4: Little Gidding”

14 Chapter 2

Throughout this book, I will often use the term Autotools, although you
won’t find a package in the GNU archives with this label. I use this term to
signify the following three GNU projects, which are considered by the com-
munity to be part of the GNU build system:

•	 Autoconf, which is used to generate a configuration script for a project

•	 Automake, which is used to simplify the process of creating consistent
and functional makefiles

•	 Libtool, which provides an abstraction for the portable creation of
shared libraries

Other build tools, such as the open source projects CMake and SCons,
attempt to provide the same functionality as the Autotools but in a more user-
friendly manner. However, because these tools attempt to hide much of their
complexity behind GUI interfaces and script builders, they actually end up
being less functional, and more difficult to manage, because the build system
is not as transparent. In the final analysis, this transparency is what makes
the Autotools both simpler to use and simpler to understand. Initial frustra-
tion with the Autotools, therefore, comes not from their complexity—for they
are truly very simple—but from their extensive use of less well understood
tools and subsystems, such as the Linux command shell (Bash), the make util-
ity, and the M4 macro processor and accompanying macro libraries. Indeed,
the meta-language provided by Automake is so simple it can be entirely
digested and comprehended within a few hours of perusing the manual
(though the ramifications of this meta-language may take a bit longer to
thoroughly internalize).

Who Should Use the Autotools?
If you’re writing open source software that targets Unix or Linux systems, you
should absolutely be using the GNU Autotools, and even if you’re writing pro-
prietary software for Unix or Linux systems, you’ll still benefit significantly
from using them. The Autotools provide you with a build environment that
allows your project to build successfully on future versions or distributions
with virtually no changes to the build scripts. This is useful even if you only
intend to target a single Linux distribution, because—let’s be honest—you
really can’t know in advance whether or not your company will want your soft-
ware to run on other platforms in the future.

When Should You Not Use the Autotools?
About the only time it makes sense not to use the Autotools is when
you’re writing software that will only run on non-Unix platforms, such
as Microsoft Windows.

A Brief Introduction to the GNU Autotools 15

Autotools support for Windows requires an Msys1 environment in
order to work correctly, because Autoconf-generated configuration scripts
are Bourne-shell scripts, and Windows doesn’t provide a native Bourne
shell.2 Unix and Microsoft tools are just different enough in command line
options and runtime characteristics that it’s often simpler to use Windows
ports of GNU tools, such as Cygwin, Msys2, or MinGW, to build Windows
programs with an Autotools build system.

For these reasons, I’ll focus mostly on using the Autotools on POSIX-
compliant platforms. Nevertheless, if you’re interested in trying out the
Autotools on Windows, check out Chapter 17 for an in-depth overview.

N O T E I’m not a typical Unix bigot. While I love Unix (and especially Linux), I also appre-
ciate Windows for the areas in which it excels.3 For Windows development, I highly
recommend using Microsoft tools. The original reasons for using GNU tools to develop
Windows programs are more or less academic nowadays because Microsoft has made the
better part of its tools available for download at no cost. For download information, see
Visual Studio Community at https://visualstudio.microsoft.com/vs/express/.

Apple Platforms and Mac OS X
The Macintosh operating system has been POSIX compliant since 2007 when
the “Leopard” release of macOS version 10 (OS X) was published. OS X is
derived from NeXTSTEP/OpenStep, which is based on the Mach kernel,
with parts taken from FreeBSD and NetBSD. As a POSIX-compliant operat-
ing system, OS X provides all the infrastructure required by the Autotools.
The problems you’ll encounter with OS X will most likely involve Apple’s
graphical user interface and package management systems, both of which are
specific to the Mac.

The user interface presents the same issues you encounter when deal-
ing with the X Window system on other Unix platforms, and then some.
The primary difference is that the X Window system is used exclusively on
most Unix systems, but macOS has its own graphical user interface called
Cocoa. While the X Window system can be used on the Mac (Apple provides

1. See MinGW, Minimalist GNU for Windows at http://www.mingw.org/ for more information
on the Msys concept.

2. Windows 10 actually supports a Linux environment called the Windows Subsystem for Linux
(WSL). The integration between the Windows host and the Linux subsystem is much tighter
than that of, say, a virtual machine running Linux on a Windows host. It’s well worth explor-
ing if you’re interested in running Linux but don’t want to entirely give up your Windows
applications. Be aware, however, that open source software programs built using the Autotools
will not run as native Windows applications but will instead interface with the WSL kernel
components. Perhaps these days the distinction simply isn’t that important.

3. Hard-core gamers will agree with me, I’m sure. I wrote the original edition of this book on a
laptop running Windows 7, but I used OpenOffice as my content editor, and I wrote the book’s
sample code on a 3GHz 64-bit dual-processor openSUSE 11.2 Linux workstation. Lately I’ve
been running the Ubuntu-based Linux Mint distribution and using LibreOffice 5.3.

http://www.mingw.org

16 Chapter 2

a window manager that makes X applications look a lot like native Cocoa
apps), Mac programmers will sometimes wish to take full advantage of the
native user interface features provided by the operating system.

The Autotools skirt the issue of package management differences
between Unix platforms by simply ignoring them. Instead, they create
packages that are little more than compressed source archives using the
tar and gzip utilities, and they install and uninstall products from the make
command line. The macOS package management system is an integral
part of installing an application on an Apple system, and projects like Fink
(http://www.finkproject.org/) and MacPorts (http://www.macports.org/) help
make existing open source packages available on the Mac by providing
simplified mechanisms for converting Autotools packages into installable
Mac packages.

The bottom line is that the Autotools can be used quite effectively on
Apple Macintosh systems running OS X or later, as long as you keep these
caveats in mind.

The Choice of Language
Your choice of programming language is another important factor to
consider when deciding whether to use the Autotools. Remember that the
Autotools were designed by GNU people to manage GNU projects. In the
GNU community, two factors determine the importance of a computer pro-
gramming language:

•	 Are there any GNU packages written in the language?

•	 Does the GNU compiler tool set support the language?

Autoconf provides native support for the following languages based on
these two criteria (by native support, I mean that Autoconf will compile, link,
and run source-level feature checks in these languages):

•	 C

•	 C++

•	 Objective C

•	 Objective C++

•	 Fortran

•	 Fortran 77

•	 Erlang

•	 Go

Therefore, if you want to build a Java package, you can configure
Automake to do so (as you’ll see in Chapters 14 and 15), but you can’t ask

http://www.finkproject.org
https://www.macports.org

A Brief Introduction to the GNU Autotools 17

Autoconf to compile, link, or run Java-based checks,4 because Autoconf sim-
ply doesn’t natively support Java. However, you can find Autoconf macros
(which I will cover in more detail in later chapters) that enhance Autoconf’s
ability to manage the configuration process for projects written in Java.

The general feeling is that Java has plenty of its own build environ-
ments and tools that work very well (maven, for instance); therefore, adding
full support for Java seems like a wasted effort. This is especially true since
Java and its build tools are themselves highly portable—even to non-Unix/
Linux platforms such as Windows.

Rudimentary support does exist in Automake for Java compilers and
JVMs. I’ve used these features myself on projects, and they work well, as
long as you don’t try to push them too far.

If you’re into Smalltalk, ADA, Modula, Lisp, Forth, or some other non-
mainstream language, you’re probably not too interested in porting your
code to dozens of platforms and CPUs. However, if you are using a non-
mainstream language and you’re concerned about the portability of your
build systems, consider adding support for your language to the Autotools
yourself. This is not as daunting a task as you may think, and I guarantee
that you’ll be an Autotools expert when you’re finished.5

Generating Your Package Build System
The GNU Autotools framework includes three main packages: Autoconf,
Automake, and Libtool. The tools in these packages can depend on utili-
ties and functionality from the gettext, M4, sed, make, and Perl packages,
among others; however, the build systems generated by these packages rely
only on a Bourne shell and the make utility.

With respect to the Autotools, it’s important to distinguish between
a maintainer’s system and an end user’s system. The design goals of the
Autotools specify that an Autotools-generated build system should rely
only on tools that are readily available and preinstalled on the end user’s
machine (assuming the end user’s system has rudimentary support for
building programs from source code). For example, the machine a main-
tainer uses to create distributions requires a Perl interpreter, but a machine
on which an end user builds products from release distribution source
archives should not require Perl (unless, of course, the project sources are
written in Perl).

A corollary is that an end user’s machine doesn’t need to have the
Autotools installed—an end user’s system only requires a reasonably

4. This statement is not strictly true: I’ve seen third-party macros that use the Java virtual
machine (JVM) to execute Java code within checks, but these are usually very special cases.
None of the built-in Autoconf checks rely on a JVM in any way. Chapters 14 and 15 outline
how you might use a JVM in an Autoconf check. Additionally, the portable nature of Java and
the Java virtual machine specification make it fairly unlikely that you’ll need to perform a
Java-based Autoconf check in the first place.

5. For example, native Erlang support made it into the Autotools because members of the
Erlang community thought it was important enough to add it themselves.

18 Chapter 2

POSIX-compliant version of make and some variant of the Bourne shell
that can execute the generated configuration script. And, of course, any
package will also require compilers, linkers, and other tools needed to
convert source files into executable binary programs, help files, and other
runtime resources.

Configuration
Most developers understand the purpose of the make utility, but what’s the
point of configure? While Unix systems have followed the de facto standard
Unix kernel interface for decades, most software has to stretch beyond
these boundaries.

Originally, configuration scripts were hand-coded shell scripts designed
to set environment variables based on platform-specific characteristics.
They also allowed users to configure package options before running make.
This approach worked well for decades, but as the number of Linux distri-
butions and Unix-like systems grew, the variety of features and installation
and configuration options exploded, so it became very difficult to write a
decent portable configuration script. In fact, it was much more difficult to
write a portable configuration script than it was to write makefiles for a new
project. Therefore, most people just created configuration scripts for their
projects by copying and modifying the script for a similar project.

In the early 1990s, it was apparent to many open source software devel-
opers that project configuration would become painful if something wasn’t
done to ease the burden of writing massive complex shell scripts to manage
configuration options. The number of GNU project packages had grown to
hundreds, and maintaining consistency across their separate build systems
had become more time-consuming than simply maintaining the code for
these projects. These problems had to be solved.

Autoconf
Autoconf 6 changed this paradigm almost overnight. David MacKenzie
started the Autoconf project in 1991, but a look at the AUTHORS file in the
Savannah Autoconf project7 repository will give you an idea of the number of
people who had a hand in making the tool. Although configuration scripts
were long and complex, users needed to specify only a few variables when
executing them. Most of these variables were simply choices about compo-
nents, features, and options, such as Where can the build system find libraries
and header files? Where do I want to install my finished products? Which optional
components do I want to build into my products?

6. For more on Autoconf origins, see the GNU web page on the topic at http://www.gnu.org
/software/autoconf/.

7. See http://savannah.gnu.org/projects/autoconf/.

https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/autoconf/
http://savannah.gnu.org/projects/autoconf/

A Brief Introduction to the GNU Autotools 19

Instead of modifying and debugging hundreds of lines of supposedly
portable shell script, developers can now write a short metascript file using
a concise, macro-based language, and Autoconf will generate a perfect con-
figuration script that is more portable, more accurate, and more maintain-
able than a hand-coded one. In addition, Autoconf often catches semantic
or logic errors that could otherwise take days to debug. Another benefit of
Autoconf is that the shell code it generates is portable between most varia-
tions of the Bourne shell. Mistakes made in portability between shells are
very common and, unfortunately, are the most difficult kinds of mistakes to
find, because no one developer has access to all Bourne-like shells.

N O T E While portable scripting languages like Perl and Python are now more pervasive than
the Bourne shell, this was not the case when the idea for Autoconf was first conceived.

Autoconf-generated configuration scripts provide a common set of
options that are important to all portable software projects running on
POSIX systems. These include options to modify standard locations (a
concept I’ll cover in more detail in Chapter 3), as well as project-specific
options defined in the configure.ac file (which I’ll discuss in Chapter 5).

The autoconf package provides several programs, including the following:

•	 autoconf

•	 autoreconf

•	 autoheader

•	 autoscan

•	 autoupdate

•	 ifnames

•	 autom4te

The autoconf program is a simple Bourne shell script. Its main task is
to ensure that the current shell contains the functionality necessary to exe-
cute the m4 macro processor. (I’ll discuss Autoconf’s use of M4 in detail in
Chapter 4.) The remainder of the script parses command line parameters
and executes autom4te.

autoreconf
The autoreconf utility executes the configuration tools in the autoconf,
automake, and libtool packages as required by the project. This utility
minimizes the amount of regeneration required to address changes in
timestamps, features, and project state. It was written as an attempt to con-
solidate existing maintainer-written, script-based utilities that ran all the
required Autotools in the right order. You can think of autoreconf as a sort
of smart Autotools bootstrap utility. If all you have is a configure.ac file, you
can run autoreconf to execute all the tools you need, in the correct order, so
that configure will be properly generated. Figure 2-1 shows how autoreconf
interacts with other utilities in the Autotools suite.

20 Chapter 2

autoreconf
(Perl script)

Scripts and Programs

aclocal
(Perl script)

autoconf
(shell script)

autoheader
(Perl script)

automake
(Perl script)

Figure 2-1: A dataflow diagram for the autoreconf utility

Nevertheless, there are times when a project requires more than simply
bootstrapping the Autotools to get a developer up and running on a newly
checked-out repository work area. In these cases, a small shell script that
runs autoreconf, along with any non-Autotools-related processes, is appropri-
ate. Many projects name such a script autogen.sh, but this is often confus-
ing to developers because there is a GNU Autogen project. A better name
would be something like bootstrap.sh.

Additionally, when used with the -i option, autoreconf will bootstrap
a project into a distributable state by adding missing files that are recom-
mended or required by GNU for proper open source projects. These
include a proper ChangeLog and template INSTALL, README, and
AUTHORS files and so on.

autoheader
The autoheader utility generates a C/C++ compatible header file template
from various constructs in configure.ac. This file is usually called config.h.in.
When the end user executes configure, the configuration script generates
config.h from config.h.in. As maintainer, you’ll use autoheader to generate the
template file you will include in your distribution package. (We’ll examine
autoheader in greater detail in Chapter 4.)

autoscan
The autoscan program generates a default configure.ac file for a new project;
it can also examine an existing Autotools project for flaws and opportuni-
ties for enhancement. (We’ll discuss autoscan in more detail in Chapters 4
and 14.) autoscan is very useful as a starting point for a project that uses a
non-Autotools-based build system, but it may also be useful for suggesting
features that might enhance an existing Autotools-based project.

autoupdate
The autoupdate utility is used to update configure.ac or the template (.in) files
to match the syntax supported by current versions of the Autotools.

A Brief Introduction to the GNU Autotools 21

ifnames
The ifnames program is a small and generally underused utility that
accepts a list of source file names on the command line and displays a
list of C-preprocessor definitions. This utility was designed to help main-
tainers determine what to put into the configure.ac and Makefile.am files
to make them portable. If your project was written with some level of
portability in mind, ifnames can help you determine where those attempts
at portability are located in your source tree and give you the names of
potential portability definitions.

autom4te
The autom4te utility is a Perl-based intelligent caching wrapper for m4 that
is used by most of the other Autotools. The autom4te cache decreases the
time successive tools spend accessing configure.ac constructs by as much as
30 percent.

I won’t spend a lot of time on autom4te (pronounced automate) because
it’s primarily used internally by the Autotools. The only sign that it’s work-
ing is the autom4te.cache directory that appears in your top-level project
directory after you run autoconf or autoreconf.

Working Together
Of the previously listed tools, autoconf and autoheader are the only ones proj-
ect maintainers use when generating a configure script, and autoreconf is the
only one that the developer needs to directly execute. Figure 2-2 shows the
interaction between input files and autoconf and autoheader that generates
the corresponding product files.

configure.ac
(m4 / shell) configure

(shell script)

config.h.in
(cpp / ac-vars)

autom4te
(Perl script)

autom4te.cache
(cache directory)

acsite.m4
(m4 / shell)

autoheader
(Perl script)

autoconf
(shell script)

User-provided data filesGenerated scriptsAutotools-provided scripts Generated data files

m4
(binary)

aclocal.m4
(m4 / shell)

Figure 2-2: A data flow diagram for autoconf and autoheader

N O T E I use the data flow diagram format shown in Figure 2-2 throughout this book.
Dark boxes represent objects provided either by the user or by an Autotools package.
Light boxes represent generated objects. Boxes with square corners are scripts and
programs, and boxes with rounded corners are data files. The meaning of most of

22 Chapter 2

the labels here should be obvious, but at least one deserves an explanation: the term
ac-vars refers to Autoconf-specific replacement text. I’ll explain the gradient shad-
ing of the aclocal.m4 box shortly.

The primary task of this suite of tools is to generate a configuration
script that can be used to configure a project build directory for a target
platform (not necessarily the local host). This script does not rely on the
Autotools themselves; in fact, autoconf is designed to generate configuration
scripts that will run on all Unix-like platforms and in most variations of the
Bourne shell. This means that you can generate a configuration script using
autoconf and then successfully execute that script on a machine that does
not have the Autotools installed.

The autoconf and autoheader programs are executed either directly by you
or indirectly by autoreconf. They take their input from your project’s configure
.ac file and various Autoconf-flavored M4 macro definition files (which,
by convention, have a .m4 extension), using autom4te to maintain cache
information. The autoconf program generates a configuration script called
configure, a very portable Bourne shell script that enables your project to offer
many useful configuration capabilities. The program autoheader generates the
config.h.in template based on certain macro definitions in configure.ac.

Automake
Once you’ve done it a few times, writing a basic makefile for a new project
is fairly simple. But problems may occur when you try to do more than just
the basics. And let’s face it—what project maintainer has ever been satisfied
with just a basic makefile?

Attention to detail is what makes an open source project successful.
Users lose interest in a project fairly easily—especially when functional-
ity they expect is missing or improperly written. For example, power users
have come to expect makefiles to support certain standard targets or goals,
specified on the make command line, like this:

$ make install

Common make targets include all, clean, and install. In this example,
install is the target. But you should realize that none of these are real
targets: a real target is a filesystem object that is produced by the build sys-
tem—usually a file (but sometimes a directory or a link). When building an
executable called doofabble, for instance, you’d expect to be able to enter:

$ make doofabble

For this project, doofabble is a real target, and this command works for
the doofabble project. However, requiring the user to enter real targets
on the make command line is asking a lot of them, because each project
must be built differently—make doofabble, make foodabble, make abfooble, and
so on. Standardized targets for make allow all projects to be built in the

A Brief Introduction to the GNU Autotools 23

same way using commonly known commands like make all and make clean.
But commonly known doesn’t mean automatic, and writing and maintaining
makefiles that support these targets is tedious and error prone.

Automake’s job is to convert a simplified specification of your project’s
build process into boilerplate makefile syntax that always works correctly
the first time and provides all the standard functionality expected. Automake
creates projects that support the guidelines defined in the GNU Coding
Standards (discussed in Chapter 3).

Just like autoconf produces a configure script that is portable to many
flavors of the Bourne shell, automake produces make script that is portable
to many flavors of make.

The automake package provides the following tools in the form of
Perl scripts:

•	 automake

•	 aclocal

automake
The automake program generates standard makefile templates (named
Makefile.in) from high-level build specification files (named Makefile.am).
These Makefile.am input files are essentially just regular makefiles. If you
were to put only the few required Automake definitions in a Makefile.am file,
you’d get a Makefile.in file containing several hundred lines of parameter-
ized make script.

If you add additional make syntax to a Makefile.am file, Automake will
move this code to the most functionally correct location in the resulting
Makefile.in file. In fact, you can write your Makefile.am files so all they con-
tain is ordinary make script, and the resulting makefiles will work just fine.
This pass-through feature gives you the ability to extend Automake’s func-
tionality to suit your project’s specific requirements.8

aclocal
In the GNU Automake Manual, the aclocal utility is documented as a temporary
workaround for a certain lack of flexibility in Autoconf. Automake enhances
Autoconf by adding an extensive set of macros, but Autoconf was not really
designed with this level of enhancement in mind.

The original documented method for adding user-defined macros to an
Autoconf project was to create a file called aclocal.m4, place the user-defined
macros in this file, and place the file in the same directory as configure.ac.
Autoconf then automatically includes this set of macros while processing
configure.ac. The designers of Automake found this extension mechanism
too useful to pass up; however, users would have been required to add an
m4_include statement to a possibly unnecessary aclocal.m4 file in order to

8. Other metabuild tools like CMake also generate makefiles but do not allow you to directly
specify what ends up in these files. Rather, you have to find the correct approach in CMake’s
macro language in order to coerce it into writing make script that does what you want it to.

24 Chapter 2

include the Automake macros. Since both user-defined macros and the use
of M4 itself are considered advanced concepts, this was deemed too harsh
a requirement.

The aclocal script was designed to solve this problem. This utility gener-
ates an aclocal.m4 file for a project that contains both user-defined macros
and all required Automake macros.9 Instead of adding user-defined macros
directly to aclocal.m4, project maintainers should now add them to a new file
called acinclude.m4.

To make it clear to readers that Autoconf doesn’t depend on Automake
(and perhaps due to a bit of stubbornness), the GNU Autoconf Manual doesn’t
make much mention of the aclocal utility. The GNU Automake Manual origi-
nally suggested that you rename aclocal.m4 to acinclude.m4 when adding
Automake to an existing Autoconf project, and this approach is still com-
monly used. The flow of data for aclocal is depicted in Figure 2-3.

aclocal
(Perl script)

aclocal.m4
(m4 / shell)

configure.ac
(m4 / shell)

m4/*.m4 files
(m4 / shell)

acinclude.m4
(m4 / shell)

User-provided data files Generated data filesAutotools-provided scripts

Figure 2-3: A data flow diagram for aclocal

However, the latest documentation for both Autoconf and Automake
suggests that the entire paradigm is now obsolete. Developers should now
specify a directory that contains a set of M4 macro files. The current recom-
mendation is to create a directory in the project root directory called m4
and add macros as individual .m4 files to it. All files in this directory will be
gathered into aclocal.m4 before Autoconf processes configure.ac.10

It may now be more apparent why the aclocal.m4 box in Figure 2-2
couldn’t decide which color it should be. When you’re using it without
Automake and Libtool, you write aclocal.m4 by hand. However, when you’re
using it with Automake, the file is generated by the aclocal utility, and you
provide project-specific macros either in acinclude.m4 or in an m4 directory.

Libtool
How do you build shared libraries on different Unix platforms without add-
ing a lot of very platform-specific conditional code to your build system and
source code? This is the question that the Libtool project tries to address.

9. Automake macros are copied into this file, but the user-written acinclude.m4 file is merely
referenced with an m4_include statement at the end of the file.

10. As with acinclude.m4, this gathering is virtual; aclocal.m4 merely contains m4_include state-
ments that reference these other files in place.

A Brief Introduction to the GNU Autotools 25

There’s a significant amount of common functionality among Unix-
like platforms. However, one very significant difference has to do with
how shared libraries are built, named, and managed. Some platforms
name their libraries libname.so, others use libname.a or even libname.sl.
The Cygwin system for Windows names Cygwin-generated shared libraries
cygname.dll. Still others don’t even provide native shared libraries. Some
platforms provide libdl.so to allow software to dynamically load and access
library functionality at runtime, while others provide different mechanisms,
and some platforms don’t provide this functionality at all.

The developers of Libtool have carefully considered all of these dif-
ferences. Libtool supports dozens of platforms, not only providing a set
of Autoconf macros that hide library-naming differences in makefiles but
also offering an optional library of dynamic loader functionality that can
be added to programs. This functionality allows maintainers to make their
runtime, dynamic shared-object management code more portable and
easier to maintain.

The libtool package provides the following programs, libraries, and
header file:

•	 libtool (program)

•	 libtoolize (program)

•	 ltdl (static and shared libraries)

•	 ltdl.h (header file)

libtool
The libtool shell script that ships with the libtool package is a generic ver-
sion of the custom script that libtoolize generates for a project.

libtoolize
The libtoolize shell script prepares your project to use Libtool. It generates a
custom version of the generic libtool script and adds it to your project direc-
tory. This custom script is shipped with the project along with the Automake-
generated makefiles, which execute the script on the user’s system at the
appropriate time.

ltdl, the Libtool C API
The libtool package also provides the ltdl library and associated header
files, which provide a consistent runtime shared-object manager across
platforms. The ltdl library may be linked statically or dynamically into
your programs, giving them a consistent runtime shared-library access
interface between platforms.

Figure 2-4 illustrates the interaction between the automake and libtool
scripts, and the input files used to create products that configure and build
your projects.

Automake and Libtool are both standard pluggable options that can be
added to configure.ac with just a few simple macro calls.

26 Chapter 2

libtoolize
(shell script)

configure.ac
(m4 / shell)

Makefile.am
(am / make)

install-sh

missing

depcomp

mkinstalldirs
(shell scripts)

COPYING
INSTALL

(text files)

config.guess

Makefile.in
(make / ac-vars)

ltmain.sh
(shell script)

autom4te
(Perl script)

autom4te.cache
(cache directory)

automake
(Perl script)

User-provided data files

Generated scripts

Autotools-provided scripts

Generated data files

config.sub
(shell scripts)

Figure 2-4: A data flow diagram for automake and libtool

Building Your Package
As maintainer, you probably build your software packages fairly often, and
you’re also probably intimately familiar with your project’s components,
architecture, and build system. However, you should make sure that your
users’ build experiences are much simpler than your own. One way to do
this is to give users a simple, easy-to-understand pattern to follow when
building your software packages. In the following sections, I’ll show you
the build pattern supported by the Autotools.

Running configure
After running the Autotools, you’re left with a shell script called configure
and one or more Makefile.in files. These files are intended to be shipped
with your project release distribution packages.11 Your users will download
these packages, unpack them, and enter ./configure && make from the top-
level project directory. The configure script will generate makefiles (called
Makefile) from the Makefile.in templates created by automake and a config.h
header file from the config.h.in template generated by autoheader.

Automake generates Makefile.in templates rather than makefiles because
without makefiles, your users can’t run make; you don’t want them to run make
until after they’ve run configure, and this functionality guards against them
doing so. Makefile.in templates are nearly identical to makefiles you might

11. GPL licensing also requires configure.ac and Makefile.am to be shipped with your package,
and the Autotools ensure that these files are in the distribution tarball. The reasoning is that
the GPL requires the full source of a project to be distributed in preferred-editing form. A
user obtaining the distribution tarball would not be able to edit anything without the base
source files for the build system. However, end users need not touch or interact with these
files unless they wish to customize the program in a manner not supported by project con-
figuration options.

A Brief Introduction to the GNU Autotools 27

write by hand, except that you didn’t have to. They also do a lot more than
most people are willing to hand-code. Another reason for not shipping ready-
to-run makefiles is that it gives configure the chance to insert platform char-
acteristics and user-specified optional features directly into the makefiles.
This makes them a better fit for their target platforms and the end user’s
build preferences. Finally, the makefiles can also be generated outside the
source tree, which means you can create custom build systems in differ-
ent directories for the same source directory tree. I’ll discuss this topic in
greater detail in “Building Outside the Source Directory” on page 28.

Figure 2-5 illustrates the interaction between configure and the scripts it
executes during the configuration process in order to create the makefiles
and the config.h header file.

config.cache

configure
(shell script)

config.h
(cpp)

config.site
(m4 / shell)

ltmain.sh
(shell script)

config.status
(shell script)

config.guess

Makefile
(make)

libtool
(shell script)

config.log
(text)

User-provided data filesGenerated scriptsAutotools-provided scripts Generated data files

config.sub
(shell scripts)

config.h.in
(cpp / ac-vars)

Makefile.in
(make / ac-vars)

Figure 2-5: A data flow diagram for configure

The configure script has a bidirectional relationship with another script
called config.status. You may have thought that your configure script gen-
erated your makefiles. But actually, the only file (besides a log file) that
configure generates is config.status.

The configure script is designed to determine platform characteristics
and features available on the user’s system, as specified in the maintainer-
written configure.ac. Once it has this information, it generates config.status,
which contains all of the check results, and then it executes this script. The
config .status script, in turn, uses the check information embedded within
it to generate platform-specific config.h and makefiles, as well as any other
template-based output files specified in configure.ac.

N O T E As the double-ended fat arrow in Figure 2-5 shows, config.status can also call
configure. When used with the --recheck option, config.status will call configure
using the same command line options used to originally generate config.status.

The configure script also generates a log file called config.log, which will
contain very useful information in the event that an execution of configure
fails on the user’s system. As the maintainer, you can use this information

28 Chapter 2

for debugging. The config.log file also logs how configure was executed. (You
can run config.status --version to discover the command line options used
to generate config.status.) This feature can be particularly handy when, for
example, a user returns from vacation and can’t remember which options
they used to originally generate the project build directory.

N O T E To regenerate makefiles and the config.h header files, just enter ./config.status
from within the project build directory. The output files will be generated using the
same options originally used to generate config.status.

The config.site file can be used to customize the way configure works based
on the --prefix option passed to it. The config.site file is a script, but it’s not
meant to be executed directly. Rather, configure looks for $(prefix)/share/config
.site and “sources” it (incorporates it as part of its own script) before execut-
ing any of its own code. This can be a handy way of specifying the same set of
options for many packages, all destined to be built and installed the same way.
Since configure is just a shell script, config.site should just contain shell code.

The config.cache file is generated by configure when the -C or --config-cache
options are used. The results of configuration tests are cached in this file and
are reusable by subdirectory configure scripts or by future runs of configure.
By default, config.cache is disabled because it can be a potential source of
configuration errors. If you’re confident with your configuration process,
config.cache can really speed up the configuration process between execu-
tions of configure.

Building Outside the Source Directory

A little-known feature of Autotools build environments is that they don’t
need to be generated within a project source tree. That is, if a user executes
configure from a directory other than the project source directory, they can
generate a full build environment within an isolated build directory.

In the following example, the user downloads doofabble-3.0.tar.gz,
unpacks it, and creates two sibling directories called doofabble-3.0.debug
and doofabble-3.0.release. They change into the doofabble-3.0.debug direc-
tory; execute doofabble’s configure script, using a relative path, with a
doofabble-specific debug option; and then run make from within this same
directory. Then they switch over to the doofabble-3.0.release directory and
do the same thing, this time running configure without the debug option:

$ gzip -dc doofabble-3.0.tar.gz | tar xf -
$ mkdir doofabble-3.0.debug
$ mkdir doofabble-3.0.release
$ cd doofabble-3.0.debug
$../doofabble-3.0/configure --enable-debug
--snip--
$ make
--snip--
$ cd ../doofabble-3.0.release
$../doofabble-3.0/configure

A Brief Introduction to the GNU Autotools 29

--snip--
$ make
--snip--

Users generally don’t care about remote build functionality, because all
they usually want to do is configure, build, and install your code on their
platforms. Maintainers, on the other hand, find remote build functional-
ity very useful, as it allows them to not only maintain a reasonably pristine
source tree but also to maintain multiple build environments for their proj-
ect, each with complex configuration options. Rather than reconfigure a
single build environment, a maintainer can simply switch to another build
directory that has been configured with different options.

There is one case, however, where a user might wish to use remote-
build. Consider the case where one obtains the full unpacked source code
of a project on CD or has access to it via a read-only NFS mount. The ability
to build outside the source tree can grant the ability to build the project
without having to copy it to writable media.

Running make
Finally, you run plain old make. The designers of the Autotools went to a lot
of trouble to ensure that you didn’t need any special version or brand of
make. Figure 2-6 depicts the interaction between make and the makefiles that
are generated during the build process.

N O T E There has been some discussion on the Autotools mailing lists during the last few
years about supporting only GNU make, as modern GNU make is so much more func-
tional than other make utilities. Almost all Unix-y platforms (and even Microsoft
Windows) have a version of GNU make today, so the rationale for continuing to sup-
port other brands of make is no longer as important as it once was.

As you can see, make runs several generated scripts, but these are all
really ancillary to the make process. The generated makefiles contain com-
mands that execute these scripts under the appropriate conditions. These
scripts are part of the Autotools, and they are either shipped with your
package or generated by your configuration script.

libtool

config.h
(cpp)

make
(binary program)

Makefile
(make)

Project Sources
(language of choice)

missing

install-sh

mkinstalldirs
(shell scripts)

Project
Targets

Generated scripts

Generated data files

System tools

User-provided data files

Figure 2-6: A data flow diagram for make

30 Chapter 2

Installing the Most Up-to-Date Autotools
If you’re running a variant of Linux and you’ve chosen to install the com-
pilers and tools used for developing C-language software, you probably
already have some version of the Autotools installed on your system. To
determine which versions of Autoconf, Automake, and Libtool you’re using,
simply open a terminal window and type the following commands (if you
don’t have the which utility on your system, try type -p instead):

$ which autoconf
/usr/local/bin/autoconf
$
$ autoconf --version
autoconf (GNU Autoconf) 2.69
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+/Autoconf: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>, <http://gnu.org/licenses/exceptions.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Written by David J. MacKenzie and Akim Demaille.
$
$ which automake
/usr/local/bin/automake
$
$ automake --version
automake (GNU automake) 1.15
Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv2+: GNU GPL version 2 or later <http://gnu.org/licenses/gpl-
2.0.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Written by Tom Tromey <tromey@redhat.com>
 and Alexandre Duret-Lutz <adl@gnu.org>.
$
$ which libtool
/usr/local/bin/libtool
$
$ libtool --version

libtool (GNU libtool) 2.4.6
Written by Gordon Matzigkeit, 1996

Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
$

N O T E If you have the Linux-distribution varieties of these Autotools packages installed on
your system, the executables will probably be found in /usr/bin rather than /usr/
local/bin, as you can see from the output of the which command here.

mailto:adl@gnu.org

A Brief Introduction to the GNU Autotools 31

If you choose to download, build, and install the latest released version
of any one of these packages from the GNU website, you must do the same
for all of them, because the Automake and Libtool packages install macros
into the Autoconf macro directory. If you don’t already have the Autotools
installed, you can install them using your system package manager (for
example, yum or apt), or from source, using their GNU distribution source
archives. The latter can be done with the following commands (be sure to
change the version numbers as necessary):

$ mkdir autotools && cd autotools
$ wget -q https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz
$ wget -q https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz.sig
$ gpg autoconf-2.69.tar.gz.sig
gpg: assuming signed data in `autoconf-2.69.tar.gz'
gpg: Signature made Tue 24 Apr 2012 09:17:04 PM MDT using RSA key ID 2527436A
gpg: Can't check signature: public key not found
$
$ gpg --keyserver keys.gnupg.net --recv-key 2527436A
gpg: requesting key 2527436A from hkp server keys.gnupg.net
gpg: key 2527436A: public key "Eric Blake <eblake@redhat.com>" imported
gpg: key 2527436A: public key "Eric Blake <eblake@redhat.com>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 2
gpg: imported: 2 (RSA: 2)$ gpg autoconf-2.69.tar.gz.sig
gpg: assuming signed data in `autoconf-2.69.tar.gz'
gpg: Signature made Tue 24 Apr 2012 09:17:04 PM MDT using RSA key ID 2527436A
gpg: Good signature from "Eric Blake <eblake@redhat.com>"
gpg: aka "Eric Blake (Free Software Programmer) <ebb9@byu.net>"
gpg: aka "[jpeg image of size 6874]"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 71C2 CC22 B1C4 6029 27D2 F3AA A7A1 6B4A 2527 436A
$
$ gzip -cd autoconf* | tar xf -
$ cd autoconf*/
$./configure && make all check
 # note – a few tests (501 and 503, for example) may fail
 # – this is fine for this release)
--snip--
$ sudo make install
--snip--
$ cd ..
$ wget -q https://ftp.gnu.org/gnu/automake/automake-1.16.1.tar.gz
$ wget -q https://ftp.gnu.org/gnu/automake/automake-1.16.1.tar.gz.sig
$ gpg automake-1.16.1.tar.gz.sig
gpg: assuming signed data in `automake-1.16.1.tar.gz'
gpg: Signature made Sun 11 Mar 2018 04:12:47 PM MDT using RSA key ID 94604D37
gpg: Can't check signature: public key not found
$
$ gpg --keyserver keys.gnupg.net --recv-key 94604D37
gpg: requesting key 94604D37 from hkp server keys.gnupg.net
gpg: key 94604D37: public key "Mathieu Lirzin <mthl@gnu.org>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1

32 Chapter 2

gpg: imported: 1 (RSA: 1)
$
$ gpg automake-1.16.1.tar.gz.sig
gpg: assuming signed data in `automake-1.16.1.tar.gz'
gpg: Signature made Sun 11 Mar 2018 04:12:47 PM MDT using RSA key ID 94604D37
gpg: Good signature from "Mathieu Lirzin <mthl@gnu.org>"
gpg: aka "Mathieu Lirzin <mthl@openmailbox.org>"
gpg: aka "Mathieu Lirzin <mathieu.lirzin@openmailbox.org>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: F2A3 8D7E EB2B 6640 5761 070D 0ADE E100 9460 4D37
$
$ gzip -cd automake* | tar xf -
$ cd automake*/
$./configure && make all check
--snip--
$ sudo make install
--snip--
$ cd ..
$ wget -q https://ftp.gnu.org/gnu/libtool/libtool-2.4.6.tar.gz
$ wget -q https://ftp.gnu.org/gnu/libtool/libtool-2.4.6.tar.gz.sig
$ gpg libtool-2.4.6.tar.gz.sig
gpg: assuming signed data in `libtool-2.4.6.tar.gz'
gpg: Signature made Sun 15 Feb 2015 01:31:09 PM MST using DSA key ID 2983D606
gpg: Can't check signature: public key not found
$
$ gpg --keyserver keys.gnupg.net --recv-key 2983D606
gpg: requesting key 2983D606 from hkp server keys.gnupg.net
gpg: key 2983D606: public key "Gary Vaughan (Free Software Developer) <gary@vaughan.pe>"
imported
gpg: key 2983D606: public key "Gary Vaughan (Free Software Developer) <gary@vaughan.pe>"
imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 2
gpg: imported: 2 (RSA: 1)
$
$ gpg libtool-2.4.6.tar.gz.sig
gpg: assuming signed data in `libtool-2.4.6.tar.gz'
gpg: Signature made Sun 15 Feb 2015 01:31:09 PM MST using DSA key ID 2983D606
gpg: Good signature from "Gary Vaughan (Free Software Developer) <gary@vaughan.pe>"
gpg: aka "Gary V. Vaughan <gary@gnu.org>"
gpg: aka "[jpeg image of size 9845]"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: CFE2 BE70 7B53 8E8B 2675 7D84 1513 0809 2983 D606
$
$ gzip -cd libtool* | tar xf -
$ cd libtool*/
$./configure && make all check
--snip--
$ sudo make install
--snip--
$ cd ..
$

A Brief Introduction to the GNU Autotools 33

The preceding example shows how to use the associated .sig files to vali-
date the signature on GNU packages. The example assumes you have not
configured a gpg key server on your system and that you have not installed
the public key for any of these packages. If you have already configured a
preferred key server, you can skip the gpg command line --keyserver options.
Once you’ve imported the public keys for these packages, you need not
do it again.

You may also wish to install in a manner that does not require root
access via sudo. To do this, execute configure with a --prefix option such as
--prefix=$HOME/autotools and then add ~/autotools/bin to your PATH environ-
ment variable.

You should now be able to successfully execute the version-check
commands from the previous example. If you still see older versions,
ensure your PATH environment variable properly contains /usr/local/bin
(or wherever you installed to) before /usr/bin.

Summary
In this chapter, I presented a high-level overview of the Autotools to give
you a feel for how everything ties together. I also showed you the pattern
to follow when building software from distribution tarballs created by
Autotools build systems. Finally, I showed you how to install the Autotools
and how to tell which versions you have installed.

In Chapter 3, we’ll step away from the Autotools briefly and begin cre-
ating a hand-coded build system for a toy project called Jupiter. You’ll learn
the requirements of a reasonable build system, and you’ll become familiar
with the rationale behind the original design of the Autotools. With this
background knowledge, you’ll begin to understand why the Autotools do
things the way they do. I can’t really emphasize this enough: Chapter 3 is one
of the most important chapters in this book, because it will get you past any emotional
stigma you may have associated with the Autotools due to misconceptions.

