
2
THE MANY BENEFITS OF

COMPUTER SCIENCE EDUCATION

In this chapter we’ll explore the cognitive, academic, and profes-
sional benefits of computer science education that can enhance
your students’ grades, personal development, and careers.
Because you’re reading this book, most likely you already value a
computer science education. But as an educator, you’ll encoun-
ter students, parents, and administrators who need convincing.
The benefits covered in this chapter include talking points you
can use to motivate students to succeed, encourage parents to
support their children academically, and garner support from
school administrators for your computer science program.

These benefits build upon one another. The cognitive ben-
efits can make students sharper and improve some areas
of academic performance. The academic benefits can improve
academic outcomes and lead to more successful professional
lives for students.

18 Chapter 2

Cognitive Benefits
The exercise of coding can provide cognitive benefits, such as enhancing problem solving,

verbal acuity, working memory, and tenacity. Although programming is associated with

improved cognitive performance on a variety of tests, there are caveats. To take advan-

tage of these benefits, they must be explicitly written into lesson plans. For example, in

Chapter 4, we’ll explore the concept of algorithms, a set of rules specifying how to solve a

problem, and how students are already processing many algorithms in their heads daily

when they follow various instructions. Educators who want their students to transfer

their computer science understanding of algorithms to troubleshooting algorithms

in their daily lives must construct lesson plans intentionally to address this concept.

Problem-Solving
Navigating code requires thinking abstractly and formally. Many problem-solving skills

and techniques that we learn crafting code are transferable to other problem domains.

For instance, working on an electronics project with some students for the first time,

I was floored to discover how my software development background empowered me

to mentor in this novel domain. The code logic and wiring logic were analogous to one

another, and I was able to apply the same problem-solving skills I use to write and debug

code to wire and troubleshoot the electronics.

For example, when programming, it’s useful to decompose larger problems into

smaller components that are easier to comprehend and solve. When applying decomposi-

tion to coding, we practice coding a bit and testing a bit (CABTAB), making sure each piece

of code works before moving on to the next piece. I applied this convention to test every

light as the students and I wired it up and to retest the lights we had wired prior. When

components stopped working, I used the wolf fence debugging technique, which is to find

a point in the middle of the code or wiring and see whether the problem occurs before

or after it. The technique is similar to a farmer building a fence down the middle of their

farm to narrow down in which half of the land the wolf is still eating their sheep. The cod-

ing logic and electronics logic were isomorphs of one another, different representations

of the same problem. Educators should explicitly highlight and reinforce the similarities

in problem-solving strategies between domains to help students understand. Because

so much of computer science emphasizes modeling problems from the real world into

formal, symbolic logic, educators can use this opportunity to teach students how to

apply formal reasoning to real-world problems.

Research on the transference of problem-solving skills involved in programming

to other domains shows mixed results. In 1990, David Palumbo, Assistant Professor

of Instructional Technology at the University of Houston—Clear Lake, analyzed the

The Many Benefits of Computer Science Education 19

research on programming language instruction and the transference of problem-solving

skills to other domains. He found that students’ ability to apply the skills they learned in

programming to other areas often depended on how similar the problem domains were,

the age-appropriateness and cognitive prerequisites of the instruction, how the language

was taught to students, which language was taught, the degree to which the teacher

mediated student learning, and what level of expertise a student could obtain within the

instruction’s time frame.

The more closely a domain resembles a programming environment, the better the

skill transference. For example, one study found that learning the now-defunct BASIC

programming language enhanced performance on specific algebra word problems.

Additionally, the way programming is taught can impact the transference of problem-

solving skills to other domains. Another study found that a mediated learning approach

that specifically focused on problem-solving skills led to significant improvement in stu-

dents’ abilities to break down problems into smaller components, make analogies, engage

in systematic trial and error, and make logical inferences from data. How coding is taught

has a huge impact on the non-coding skills students might take away from the lessons.

Programming Is Communication
Coding is an exercise in communication. In a 2007 study, 95 percent of 780 surveyed pro-

grammers considered understanding existing code a significant part of their job. When

we code, we’re composing a story in such a way that our collaborators can follow it. Those

collaborators can also include our future selves: we might one day return to maintain

the code and be reading it as if for the first time. Other collaborators can be quite obtuse,

such as the computer, which reads our code literally, doing exactly what we ask it to even

though it’s not what we intended. When writing code, we must keep our audience in

mind, making it literal for the computer and expressive enough for our peers.

With increasing market demands for technical professionals, some administrators

are suggesting schools award students foreign language credit for taking computer pro-

gramming classes. But this is misguided. Learning a foreign language gives us deeper

insights into our own language and builds bridges to other cultures to better under-

stand our own. At the same time, programming languages share many characteristics

with natural languages that might allow the two subjects to complement and reinforce

one another. Programming languages, like natural languages, have syntax, grammar,

and semantics. It’s possible to write lines of code that are syntactically correct but are

semantically incorrect, just as Noam Chomsky’s “Colorless green ideas sleep furiously”

is grammatically correct but semantical nonsense. Like natural languages, programming

languages branch out and relate to one another.

20 Chapter 2

Bilingualism is linked to numerous cognitive benefits, such as improved metalin-

guistic awareness, creativity, and problem-solving. To determine whether programmers

experienced these bilingual benefits, Hannah Wright, a child development master’s

student at the University of London, did a study. She worked with 10 professional com-

puter programmers (aged 22–25), 10 adolescent computer programmers (aged 14–17),

and an equal number of controls for a total of 40 monolingual, English-speaking young

adults and adolescents to see how they performed on cognitive tests where bilinguals

had an advantage. The two groups of programmers performed significantly better on the

Attention Network Task, which measured their ability to achieve and maintain an alert

state, select information from sensory input, and monitor and resolve conflicts.

In addition to communicating with their fellow programmers, the literal-thinking

computer, and their future selves, programmers must also communicate all their ideas in

the formal and foreign language of code. Computer programming is a complex, challeng-

ing, and rewarding medium to converse in.

Coding Exercises Working Memory
Students immersed in code exercise their working memory and focus. Working memory

is the ability of individuals to remember and process information in their immediate

consciousness—normally 10 to 15 seconds. How much information a person can hold

in working memory and for how long varies depending on the task and from person to

person. Psychologists often use n-back tasks, such as reciting increasingly long strings of

numbers, to measure working memory. Writing code is a working memory–intensive task.

It requires the coder to hold many variables and algorithms in focus to understand and

work with the code.

Every software developer is familiar with this scenario: you’re tracking down an espe-

cially irksome bug in the software. Maybe it’s a bit of data that is getting corrupted. You’ve

traced the value from the database table where it’s stored, through the view sending it to

the business layer, past the object model, watching function after function handle it. You

track it coming out to the user interface where more functions interact with it and the

user can manipulate it. Next, it gets sent back to form handlers, persistence functions,

and then your phone vibrates and the whole mental construct comes crashing down.

Students who come into programming with a strong working memory are more suc-

cessful at learning how to code. In 1991, Valerie Shute, at the Air Force Human Resources

Laboratory, tested 260 people. They took a seven-day Pascal programming class from

an automated tutoring system to assess their working memory, problem-solving skills,

and learning styles. Using a wide variety of tests to measure different dimensions of the

students’ working memory, including quantitative, verbal, and spatial skills, she found a

The Many Benefits of Computer Science Education 21

strong correlation between students having a strong working memory and the ability to

successfully learn programming.

Although this study found that students with better working memories are bet-

ter programmers, it doesn’t mean students with weaker working memories can’t learn

programming. It simply means that students with weaker working memories need to

break down programs and problems into smaller components with fewer variables to

keep in mind. Computer science education encourages students to practice this pro-

gramming technique by decomposing larger problems into smaller problems that are

easier to solve.

Also, these students might only need to break down problems when they first start to

learn programming. Multiple research studies have found that working memory responds

to exercise, just like our muscles or other components of our brain, due to its plasticity. In

one study, researchers found that subjects could expand their working memory from one

item to four in just 10 hours of practice spread across five days.

Coding Exercises Tenacity
Coding demands students work through problems. Often, those problems require long-

term engagement. When students decompose a complex coding problem into a bunch

of smaller problems, they feel rewarded more often for each little problem they solve. For

especially challenging problems, those in which they must research for hours or days

gathering bits of evidence, they will ideally begin to grow eager to know what they’ll even-

tually uncover. Coding is a self-reinforcing task that rewards students for tackling big

projects.

In recent years, researchers have identified tenacity—or motivation, effort, persever-

ance, or “grit”—as a crucial “non-cognitive” skill in academic performance. The Common

Core state standard “Make sense of problems and persevere in solving them” recognizes

the importance of stick-to-itiveness in academic achievement. Coding projects provide an

excellent opportunity for students to exercise their tenacity.

As the educator and coach, you must assure your students that there is a solution
to every problem. Finding that solution might involve some part of the code they never

thought to investigate. It might involve having the student explain the problem to a peer,

because articulating the problem in a way someone else can understand often helps

to uncover deeper insights into it. The solution might come to student at three in the

morning and leave them staring at the ceiling for several hours waiting to go to school.

Coaching your students to stick with their coding problems encourages them to flex their

tenacity muscles and develop coping strategies for seeing their way through difficult

problems.

22 Chapter 2

Quantifiable You
We’ve touched on many different studies examining the potential cognitive benefits

of coding and computational thinking. In each of these studies, researchers had to

identify nebulous cognitive attributes, concretely define them, and establish stan-

dard quantifiable measures for them. Software developers must also wrestle with

what are often vaguely defined requirements or processes and concretely define

them to implement variables and logic the computer can work with.

Try this self-improvement exercise with your students: ask them, “What are the

variables that define you?” For example, in physical fitness, we can track numerous

metrics: resting heart rate, body mass index (BMI), number of pull-ups, minutes per

mile, blood-glucose levels, maximum heart rate, number of steps in a day, and so

forth. All of these are variables we can quantify about our athleticism and healthy

lifestyle. You could make each metric a column in a spreadsheet. Then make each

row a date when you measured it, and chart a graph of how you improve every one

over time.

Your school tracks many academic performance variables in the form of grades,

but the metrics defining a math grade are very different from those behind an

English grade. For example, an English teacher evaluating an essay might count

how many times the student cites evidence, measuring frequency. A math teacher

might evaluate the number of correct answers on a test, measuring proportionality.

Additionally, teachers evaluate behavior variables, such as the duration for which a

student focuses or reads independently, the latency of how long it takes a student to

answer a question, or the quantity of how many prompts a student needs on a task

versus working independently. In academia, these different measurement points

are called rubrics, and being aware of them can help students know what to focus on

and track in their personal progress.

There are also many activities in students’ personal lives that school doesn’t

formally measure but that contribute to their academic success. For example,

time spent independently reading, focusing on difficult math problems, or making

progress on a long-term project also improves their grades. Encouraging students

to log these metrics in terms of duration, frequency, proportionality, and indepen-

dence can help them think about their thinking, appreciate how much work they’re

doing, and make them aware of how they can best improve themselves while also

practicing the art of defining and quantifying variables needed to evaluate them

computationally.

The Many Benefits of Computer Science Education 23

Educational Benefits
When we write code, we’re working toward an outcome, a goal. Every application we

write requires inquiry, deep thinking, self-direction, presentation, peer review, revision,

and iteration. Each application we craft is a project, which is what makes it complement

academia so well.

Project-based learning (PBL) is a teaching method in which students engage in deep sus-

tained inquiry into a complex problem or question and produce a research-based artifact

to present to their peers. The PBL approach takes advantage of a student’s natural curios-

ity, challenging them with a problem and sending them off to find the answer on their own

with minimal teacher guidance. While addressing the main project, students will encoun-

ter many related subproblems they must solve, just like solving larger real-world problems.

PBL is associated with positive educational outcomes. In one study, students in

a school using PBL significantly outperformed those in a traditional school in math-

ematics and conceptual and applied knowledge, and three times as many students

passed the British national exam. Additionally, PBL aligns well with the intentions of

the Common Core state standards, such as “Research to Build and Present Knowledge,”

“Comprehension and Collaboration,” and “Presentation of Knowledge and Ideas.”

PBL is a highly rewarding way of learning. Producing artifacts deeply immerses

students in the subject matter, making demands of their critical thinking and problem-

solving skills. Through sustained inquiry, each question leads to more questions and each

reference to more references. They share their product with their peers, who will offer

critiques and enhancements. At the end of all their efforts, the product will be an artifact

of which they’re deeply proud.

Coding projects are ideal for PBL because they require deep reading, experimenta-

tion, research, collaboration, peer review, and an end product they can showcase in a

portfolio with other academic achievements. John McManus and Philip Costello at

Randolph-Macon College published their positive experience applying PBL to coding

projects in their classrooms in the paper Project Based Learning in Computer Science: A
Student and Research Advisor’s Perspective. The projects consisted of students program-

ming autonomous drones to collect scientific data. Although their personal experience

was anecdotal, they found students were driven to perform well due to the sense of

project ownership. They also felt that the PBL approach allowed students to practice

what they had previously learned while acquiring new hands-on skills that are diffi-

cult to teach in a classroom environment. These hands-on skills were seen as fostering

discipline and professional growth that would benefit students beyond an academic

setting. Chapter 8 covers in detail how to facilitate PBL projects in your classroom and

how to align the project development process with software development practices.

24 Chapter 2

Code Is a Complex Text Requiring Close Reading
Close reading is an exercise that has students develop a deep, critical understanding of

a text. A close reading of a complex text might have students first read the text for key

ideas, then reread key passages to understand the style and structure, and then reread the

text again to draw inferences and conclusions that the text supports. The Common Core

standards recommend close reading by telling students, “Read closely to determine what

the text says explicitly and to make logical inferences from it; cite specific textual evi-

dence when writing or speaking to support conclusions drawn from the text.”

Reading unfamiliar code requires close reading. From 1983 to 1984, Nancy Pennington

studied 80 professional programmers to learn how they comprehend code and form men-

tal representations of it in their minds (Stimulus Structures and Mental Representations in
Expert Comprehension of Computer Programs). She found that when programmers read unfa-

miliar code, they break up that code into generalized chunks that describe what is going

on in sections of the software solution without getting into the minutiae.

Programmers closely read the lines of code to construct a narrative they can later

recall as a story. Just as in close reading, the programmer revisits functions or code blocks

the same way a critic returns to key passages in a text. They scrutinize naming conven-

tions, semantics, and code structure with a critical eye to see whether there are ways to

make it clearer and more legible, which improves its maintainability. The critical analysis

of code is very much like the critical analysis of a complex text and exercises a student’s

ability to engage in deep, sustained focus.

Coding Requires Research and Collaboration
Software developers spend much of their time asking questions. What’s the best way

to verify that user input is numeric? How do I filter out spaces in a string? How can my

program upload a file or send an email? Writing a literary essay means starting from the

reading and developing hypotheses from it, whereas writing software begins with defin-

ing an end goal and then researching your way to achieving it.

In the early 2000s, programmers kept thick books on their desks, one for each lan-

guage they used in their day-to-day operations. Each book was approximately 1,000 pages

long, listing every function the language encapsulated in alphabetical order. Programmers

would spend hours of their day flipping through these texts, looking up functions, what

arguments to send them, and what outputs they would return. It was a very intensive and

solitary process.

The barriers to coding are much lower today than in previous decades. Coders now

spend much of their time searching the web for answers. If they don’t find what they

need on the search engines, they can post a question to a forum where participants score

The Many Benefits of Computer Science Education 25

reputation points for providing the best, most accurate answers. Online research becomes

a dialogue among experts and novices. Today, kids have it much easier when it comes to

research, and everyone should be happy and excited for them because it’s a good thing:

this ecosystem of experts openly debating every detail of the programming craft is why

software advances so rapidly.

After writing code based on their research, students can then share what they’ve written

with others in the classroom and learn from one another. One concern with student-to-

student peer review is that it creates a situation in which novices guide novices. Students

peer-reviewing text often express opinions without supporting them. But the formality of

code tends to force students to defend why they think the code should be refactored.

Because the code produces a verifiable output, the first criteria for evaluating a peer’s

comments is to see whether the code still works with their change request. Another cri-

terion is to ask whether the change makes the code easier to comprehend and maintain.

For example, a student might recommend moving a block of code into its own function.

To justify this move, they might argue, “This block of code validates an email address. If

you encapsulate it in a function, you can abstract away many lines of code into a single

verifyEmail(), which you can call anywhere else you need to validate an email address.

Then, if you ever need to change the verification logic, you need only do it in one place.”

But students can learn even from their peers’ misunderstandings. Just as with cri-

tiquing a text, students peer-reviewing one another’s code will ask questions that should

prompt the coder to evaluate whether they’re presenting their ideas clearly. If a peer is

confused by a variable named searchResult and the function it serves in a contact list,

the coder might rewrite it as searchContacts to indicate what search result is being

returned. Ideally, students should practice presenting their ideas more clearly in their

code with an eye to making their code clearer for their collaborators.

Code Provides Playgrounds for Experimentation
Today’s classrooms are increasingly taking advantage of manipulatives: toys or objects

that each teach a single skill or concept. For example, a teacher might use binary coins

with printed values of 1, 2, 4, 8, 16, 32, 64, and so on, and have students use them as pre-

tend currency to explore the base-2 number system. Manipulatives provide students

with the opportunity to engage in self-directed learning through playful exploration and

experimentation.

The act of coding requires perpetual experimentation and exploration. People who

don’t code often envision a very formal software writing process. They imagine project

planners, engineers, and architects scoping and designing every detail of the system

before a developer commits a single line of code. In practice, the process is much dif-

ferent. A significant portion of coding time is spent on experimentation. Often, code can

26 Chapter 2

become so complex that even the coder doesn’t know exactly how it works. So they play

with it. They change the order of operations, tweak variables, or tell the computer to recite

variables at different points to see whether they’re transforming as intended. They might

flip a value from “true” to “false” to see what happens. Or they might ask the application

for a million apples. What about “tqewfsdfve” apples? Code is itself a manipulative.

Iterative You
Ask your students how the world has improved since they were younger. What are

some technologies that have come out in the last year or two? These can be very

small improvements, such as a new kind of headphone, smartphone, car dashboard,

or other minor development we might otherwise not notice. How do these technolo-

gies build upon the technologies that existed before them? In other words, what

technologies had to exist before these new technologies could emerge?

Consider a longer period of time. How has the world improved over a 90-year-

old person’s lifetime? What technologies didn’t exist for them as children that

enhance their lives today? Their lives were filled with small technological improve-

ments that they might have hardly noticed at the time, but over a century, they

amassed into a tidal wave of change.

In software development, these tiny regular enhancements are known as

iterations. When developing software, we release a base working version of a prod-

uct, usually version 1.0, and then iteratively add improvements to it in the form

of versions 1.1, 1.2, 1.21, and so on. Not every iteration is wholly an improvement;

some versions introduce new bugs or poorly thought-out changes, but additional

iterations address these issues. All the major popular websites we use today started

out as much smaller, less feature-rich products and grew into the expansive, com-

plex applications we currently use.

Education works in an iterative fashion as well. We had to learn our letters and

phonemes before we could read simple words. We had to read simple words before

we could read compound words. We had to learn cardinality before we could learn

addition and subtraction. We must be sufficiently proficient in math and reading to

write software code.

One way to quantify how knowledge builds on knowledge is to draw a tree with

prerequisites in the trunk and branches leading to more advanced subjects in the

leaves. Where do your students feel they are in the tree? What skills do they need to

climb onto the limbs of what they want to master? Up the tree of knowledge they

The Many Benefits of Computer Science Education 27

grow, as illustrated in Figure 2-1, learning building on learning they level up with

each new grade until version 1.0 is released to the world on graduation day.

Determine
Unknown

Whole Number
in Equations

(for example, 8 + ? = 11)

Relationship Between
Addition and
Subtraction

Meaning of
Equal Sign

Properties of
Operations

Word Problems

DecompositionAddition/
Subtraction

< = 20

Measurement

Addition/
Subtraction

< = 10

Greater Than
Less Than

Cardinality

Number, Names, and
Count Sequence

Figure 2-1: How knowledge grows on knowledge in Kindergarten through second grade math

28 Chapter 2

Computers allow children to create their own learning environments through

programming. Kids teach the computer how to think and behave, and they engage in

metacognition in the process. Computers offer students access to an infinite number of

manipulatives.

Professional Benefits
It’s difficult to think of anyone in today’s workforce who doesn’t work with informa-

tion and doesn’t augment their job performance with information systems. In the 21st

century, many professions are tightly coupled to computational tools and information

systems, and can therefore benefit from computer science education. In this section, we

will learn a few of the many ways a computer science education will benefit your stu-

dents’ future selves when they enter the professional world.

Computer Science Makes You More Employable
Software developers are in high demand and will remain so into the foreseeable future.

In 2016, the average software developer’s salary was $100,080, and the employment of

software developers is projected to grow 22 percent from 2012 to 2022. In 2013, software

engineers had a 3.6 percent unemployment rate, which was half the overall unemploy-

ment rate of 7.3 percent at that time.

But it’s not just computer programmers who can improve their job security through

computer science education. Everyone in an office building, from the managers to the

financial overseers to the building supervisors, uses information systems to optimize

their workflows. Outside of the office, construction workers must navigate an ocean of

local, state, and federal building codes hosted in numerous online applications to prop-

erly do their jobs. Fast-food workers must rapidly monitor and manipulate data to ensure

quality food gets to customers quickly. Freelance drivers must work with service provider

apps and maximize their use of navigation applications to get customers to their destina-

tions quickly. Nearly everyone works with software in today’s economy, and those who

understand what software can do will be more proficient than those learning on the job.

Along with this growing use of software comes new digital citizenship challenges for

many professions. For example, as information technology grows more prevalent in hos-

pitals, doctors and nurses will need to know how networked information systems comply

with patient privacy laws. Marketers taking their messages to social media will need to be

mindful of how those platforms are tracking the activities of their audience and monetiz-

ing that data. Writers, graphics designers, and editors working in Content Management

Systems (CMS) will need to carefully ensure they don’t violate local and global intellec-

tual property and privacy laws.

The Many Benefits of Computer Science Education 29

As data grows more valuable and more sensitive as users entrust it to organizations,

professionals must also be vigilant in protecting that data. A professional working in

the organization’s payroll department must be aware of the dangers of phishing attacks.

They must proactively ask their organization’s engineers about the software measures

guarding their servers. They must be educated as to how having the organization’s data

compromised would be disastrous for their co-workers, and be familiar with cybersecurity

concepts that secure that data.

Coding Makes You a Star
Imagine you’re at a meeting with a project manager, IT director, graphics designer, copy

editor, marketing manager, sales manager, and various subject-matter experts discussing

an online application. Each role has its own area of expertise to contribute. But the only

person technically capable of translating these visions into the code needed to bring it to

life is the programmer.

In many organizations, the software developer is the person who brings a project

together. That new marketing write-up? The programmer is the one who knows how to

typeset it online. The new banner image? The programmer is the one who knows how to

upload it to the server and reference it in the code. A designer wants to animate a menu?

You’ll need someone code-literate to create that interactivity.

Programmers must learn how entire organizations operate. This is especially true

when you’re coding business logic. For example, when I coded for the Coast Guard, the

pilots, mechanics, and officers shared everything they knew about aviation logistics with

me. While coding for food safety laboratories, I learned about pathogens, chemistry, and

quality testing from PhDs. Working at an educational organization, I learned the ins and

outs of social networking, marketing, and publishing.

Over time, organizations grow more dependent on a coder’s wisdom as other employ-

ees leave, and co-workers must reach out to the software developer to understand how

their jobs were performed. Having such a deep understanding of an organization’s busi-

ness processes provides the software developer with a high degree of job stability.

Coding and Computational Thinking Make You Efficient
It’s not just the employees with the “software developer” job title who can benefit from

knowing programming. Being capable of computational thinking and knowing some

 programming can open professionals to opportunities to improve efficiency and auto-

mate tasks.

For example, an office assistant managing a corporate website might need to refor-

mat the contacts page from listing first name, last name, phone, and email to instead

displaying last name, first name, email, and phone. The most straightforward way to do

30 Chapter 2

this is to copy and paste to rearrange the fields, but this would be time-consuming and

prone to errors. An assistant who knows about string manipulation functions could sim-

ply paste the list into a spreadsheet and apply a string concatenation function to output

the fields in the new format.

By doing so, this professional improves their efficiency and accuracy. They’ve

automated a repetitive task. The act of automating this process was more technically

challenging than the repetitive task, but the time saved was the reward for tackling that

complexity. Automation lets us work smarter, not harder. Figure 2-2 illustrates how this

works in practice.

EF
FO

R
T

TIME

Without Automation

With Automation

Figure 2-2: Effort over time with and without automation

The figure shows how the level of effort changes over time when we automate tasks.

Without automation, the level of effort for a repetitive task remains the same forever. But

when we decide to automate a task, we may initially be challenged with the complexity

of how to automate it. There will be a learning curve and the increased stress that comes

with problem-solving. Once the problem is solved, the effort and stress of performing the

task drop to a minimum or even vanish.

Consider the simple example of scheduling a meeting for the fourth Tuesday of each

month. The meeting organizer can look at each month of the calendar year and schedule

12 meetings. Alternatively, because they understand computer systems and can think

computationally, they can use the extra effort to figure out how to schedule a recurring

meeting one time and never think about it again.

The Many Benefits of Computer Science Education 31

Opportunity Cost
Lots of students understand the powerful influence of digital distractions in their

lives. You can use video games, social media, or binge-watching online shows as an

example to illustrate the concept of opportunity cost by asking students to start

thinking about their time as a finite resource.

For example, 40 hours spent watching the entirety of a show on a streaming

service is 40 hours not spent on exercising, learning new skills, socializing, or earn-

ing income. This illustrates an opportunity cost, which means that the resources you

spend on one activity are resources you can’t spend on another. We must choose

how to spend our resources wisely.

You can also expand on this further to show a few minutes spent more wisely

each day can compound into huge benefits over time. For example, a student who

reads 13 minutes a day will read 722,000 words in a year on average. A student who

reads 17 minutes a day will consume about 1,168,000 words in that same time. And

a student who reads 33 minutes a day will be exposed to approximately 2,357,000

words in a year. Trading just 33 minutes a day that would otherwise be spent on

video games, social networking, or streaming videos to read a book for fun puts a

student in the 90th percentile for amount of reading and the many academic ben-

efits that come with it.

Have students quantify time from the obverse to see how they might optimize

their time for efficiency. For instance, what if they could shave off just 30 seconds

from one of their daily routines? That would add up to three hours of time saved

each year. A student who gains 6.6 minutes each day on getting ahead on homework

will have accumulated more than 40 hours of free time at the end of the year to

spend on another season of online streaming.

Professionals who can automate their repetitive tasks and streamline their work-

flows using IT save time and maximize their efficiency. This increases their value to their

organizations and enhances their professional lives.

Summary
In this chapter, we explored the many ways learning computer science will benefit

your students. Cognitively, students who learn computer science will develop a toolkit

of problem-solving skills they can transfer to other knowledge domains. When writing

code, students practice communicating in the very precise and literal way computers

demand while also making their code understandable to peers and their future selves.

32 Chapter 2

Writing code also exercises their working memory as they hold stacks of variables and

logic in their brains to debug and enhance their programs. The act of coding exercises the

student’s grit or stick-to-itiveness to see their projects through to that moment of satis-

faction when it finally executes successfully.

Because producing computational artifacts is PBL, computer science instruction

can enhance a students’ academic success as they engage in close reading, sustained

inquiry, collaboration, peer review, and iterative development. Through online forums

and in-class code reviews, students engage in dialogue with peers to collaborate on

problem-solving and best practices. When tinkering with their code, students engage in

exploration through experimentation and experience the joy of flow and discovery.

Professionally, computer science education makes your students more employable

and higher salary earners. Knowing how to automate business logic makes them valuable

to their employers, and their professional lives easier. As the solutions provider for their

organization, they’ll gain a deep understanding of the organization’s business processes,

making them indispensable to their employer.

Making students aware of computer science education’s cognitive benefits encour-

ages metacognition, awareness of the educational benefits makes them engaged partners

in their schooling, and awareness of the subject’s professional benefits provides them

with incentives to succeed. Parents and administrators who are aware of these many

benefits will have incentive to provide the support structures crucial to students’ success

in their projects.

Although all of these reasons for computer science education are pragmatic and

rational, it’s also important to stress the subject’s humanistic side. In the next chapter,

we’ll take a deep dive through the history of computer science, starting with the icons on

your desktop and descending through the code. We’ll form a connection between tech-

nologies and people by learning about the individuals behind these innovations.

