THE MANGA GUIDE" TO

LINEAR

SHIN TAKAHASHI
IROHA INOUE TREND-PRO CO., LTD.

2

THE FINDAMENTALS

COMPLEX NUMBERS

Complex numbers are written in the form

$$
a+b \cdot i
$$

where a and b are real numbers and i is the imaginary unit, defined as $i=\sqrt{-1}$.

REAL
NUMBERS

INTEGERS

- Positive natural numbers
- 0
- Negative natural numbers

RATIONAL NUMBERS* (NOT INTEGERS)

- Terminating decimal numbers like 0.3
- Non-terminating decimal numbers like 0.333...

IRRATIONAL NUMBERS

- Numbers like π and $\sqrt{2}$ whose decimals do not follow a pattern and repeat forever

IMAGINARY NUMBERS

- Complex numbers without a real component, like 0 + bi, where b is a nonzero real number

26 CHAPTER 2 THE FUNDAMENTALS

IMPLICATION AND EQUIVALENCE

BUT IF WE LOOK AT ITS CONVERSE...
"IF THIS DISH CONTAINS PORK THEN IT IS A SCHNITZEL"
...IT IS NO LONGER NECESSARILY TRUE.

SET THEORY

EXAMPLE 1

The set "Shikoku," which is the smallest of Japan's four islands, consists of these four elements:

- Kagawa-ken ${ }^{1}$
- Ehime-ken
- Kouchi-ken
- Tokushima-ken

EXAMPLE 2

The set consisting of all even integers from 1 to 10 contains these five elements:

- 2
- 4
- 6
- 8
- 10

1. A Japanese ken is kind of like an American state.

EXAMPLE 1

Suppose we have two sets X and Y :

$$
\begin{aligned}
& X=\{4,10\} \\
& Y=\{2,4,6,8,10\}
\end{aligned}
$$

X is a subset of Y, since all elements in X also exist in Y.

EXAMPLE 2

Suppose we switch the sets:

$$
\begin{aligned}
& X=\{2,4,6,8,10\} \\
& Y=\{4,10\}
\end{aligned}
$$

Since all elements in X don't exist in Y, X is no longer a subset of Y.

EXAMPLE 3

Suppose we have two equal sets instead:

$$
\begin{aligned}
& X=\{2,4,6,8,10\} \\
& Y=\{2,4,6,8,10\}
\end{aligned}
$$

In this case, both sets are subsets of each other. So X is a subset of Y, and Y is a subset of X.

EXAMPLE 4

Suppose we have the two following sets:

$$
\begin{aligned}
& X=\{2,6,10\} \\
& Y=\{4,8\}
\end{aligned}
$$

In this case neither X nor Y is a subset of the other.

FUNCTIONS

EVEN IF HE TOLD US TO ORDER OUR FAVORITES, WE WOULDN'T REALLY HAVE A CHOICE. THIS MIGHT MAKE US THE MOST HAPPY, BUT THAT DOESN'T CHANGE THE FACT THAT WE HAVE TO OBEY HIM.

[^0]

This is the element in Y that corresponds to x_{i} of the set X, when put through the function f.

"LIKE WHATEVER! ANYWAYS, SO IF I WANT TO SUBSTITUTE WITH 2 IN THIS FORMULA, I'M SUPPOSED TO WRITE

WE'RE GOING TO WORK WITH A SET
\{UDON, BREADED PORK, BROILED EEL\}

WHICH IS THE IMAGE OF THE SET X UNDER THE FUNCTION f. ${ }^{*}$

WE COULD EVEN HAVE DESCRIBED THIS FUNCTION AS

$Y=\{f($ Yurino $), f($ Yoshida $), f($ Yajima $), f($ Tomiyama $)\}$
IF WE WANTED TO.

The set that encompasses the function f 's image $\left\{f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right\}$ is called the range of f, and the (possibly larger) set being mapped into is called its co-domain.

The relationship between the range and the co-domain Y is as follows:

$$
\left\{f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right\} \subset Y
$$

In other words, a function's range is a subset of its co-domain. In the special case where all elements in Y are an image of some element in X, we have

$$
\left\{f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right\}=Y
$$

ONTO FUNCTIONS

A FUNCTION IS ONTO IF ITS IMAGE IS EQUAL TO ITS CO-DOMAIN. THIS MEANS THAT ALL THE ELEMENTS IN THE CO-DOMAIN OF AN ONTO FUNCTION ARE BEING MAPPED ONTO.

IF $x_{i} \neq x_{j}$ LEADS TO $f\left(x_{i}\right) \neq f\left(x_{j}\right)$, WE SAY THAT THE FUNCTION IS ONE-TO-ONE. THIS MEANS THAT NO ELEMENT IN THE CO-DOMAIN CAN BE MAPPED ONTO MORE THAN ONCE.

ONE-TO-ONE AND ONTO FUNCTIONS

IT'S ALSO POSSIBLE FOR A FUNCTION TO BE BOTH ONTO AND ONE-TO-ONE. SUCH A FUNCTION CREATES A "BUDDY SYSTEM" BETWEEN THE ELEMENTS OF THE DOMAIN AND CO-DOMAIN. EACH ELEMENT HAS ONE AND ONLY ONE "PARTNER."

WE'LL GO INTO MORE DETAIL LATER ON.

Let x_{i} and x_{j} be two arbitrary elements of the set X, c be any real number, and f be a function from X to Y. f is called a linear transformation from X to Y if it satisfies the following two conditions:

$$
\begin{aligned}
& \text { (1) } f\left(x_{i}\right)+f\left(x_{j}\right)=f\left(x_{i}+x_{j}\right) \\
& \text { (2) } c f\left(x_{i}\right)=f\left(c x_{i}\right)
\end{aligned}
$$

AN EXAMPLE OF A LINEAR TRANSFORMATION

The function $f(x)=2 x$ is a linear transformation. This is because it satisfies both 1 and ${ }^{2}$, as you can see in the table below.

Condition (1)	$\left\{\begin{array}{l}f\left(x_{i}\right)+f\left(x_{j}\right)=2 x_{i}+2 x_{j} \\ f\left(x_{i}+x_{j}\right)=2\left(x_{i}+x_{j}\right)=2 x_{i}+2 x_{j}\end{array}\right.$
Condition (2)	$\left\{\begin{array}{l}c f\left(x_{i}\right)=c\left(2 x_{i}\right)=2 c x_{i} \\ f\left(c x_{i}\right)=2\left(c x_{i}\right)=2 c x_{i}\end{array}\right.$

AN EXAMPLE OF A FUNCTION THAT IS NOT A LINEAR TRANSFORMATION

The function $f(x)=2 x-1$ is not a linear transformation. This is because it satisfies neither (1) nor ©, as you can see in the table below.

Condition (1)	$\left\{\begin{array}{l}f\left(x_{i}\right)+f\left(x_{j}\right)=\left(2 x_{i}-1\right)+\left(2 x_{j}-1\right)=2 x_{i}+2 x_{j}-2 \\ f\left(x_{i}+x_{j}\right)=2\left(x_{i}+x_{j}\right)-1=2 x_{i}+2 x_{j}-1\end{array}\right.$
Condition (2)	$\left\{\begin{array}{l}c f\left(x_{i}\right)=c\left(2 x_{i}-1\right)=2 c x_{i}-c \\ f\left(c x_{i}\right)=2\left(c x_{i}\right)-1=2 c x_{i}-1\end{array}\right.$

COMBINATIONS AND PERMUTATIONS

I thought the best way to explain combinations and permutations would be to give a concrete example.

I'll start by explaining the \&PROBLEM, then I'll establish a good WWA OF THINKING, and finally I'll present a B SOLUTION.

? PROBLEM

Reiji bought a CD with seven different songs on it a few days ago. Let's call the songs A, B, C, D, E, F, and G. The following day, while packing for a car trip he had planned with his friend Nemoto, it struck him that it might be nice to take the songs along to play during the drive. But he couldn't take all of the songs, since his taste in music wasn't very compatible with Nemoto's. After some deliberation, he decided to make a new CD with only three songs on it from the original seven.

Questions:

1. In how many ways can Reiji select three songs from the original seven?
2. In how many ways can the three songs be arranged?
3. In how many ways can a CD be made, where three songs are chosen from a pool of seven?

* WAY OF THINKING

It is possible to solve question 3 by dividing it into these two subproblems:

1. Choose three songs out of the seven possible ones.
2. Choose an order in which to play them.

As you may have realized, these are the first two questions. The solution to question 3, then, is as follows:

SOLUTION TO QUESTION $1 \cdot$ SOLUTION TO QUESTION $2=$ SOLUTION TO QUESTION 3		
In how many ways can Reiji select three songs from the original seven?	In how many ways can the three songs be arranged?	In how many ways can a CD be made, where three songs are chosen from a pool of seven?

1. In how many ways can Reiji select three songs from the original seven?

All 35 different ways to select the songs are in the table below. Feel free to look them over.

Pattern 1	A and B and C
Pattern 2	A and B and D
Pattern 3	A and B and E
Pattern 4	A and B and F
Pattern 5	A and B and G
Pattern 6	A and C and D
Pattern 7	A and C
Pattern 8	A and C and F
Pattern 9	A and C and G
Pattern 10	A and D and E
Pattern 11	A and D and F
Pattern 12	A and D and G
Pattern 13	A and E and F
Pattern 14	A and E and G
Pattern 15	A and F and

Pattern 16	B and C and D
Pattern 17	B and C and E
Pattern 18	B and C and F
Pattern 19	B and C and G
Pattern 20	B and D
Pattern 21	B and D and F
Pattern 22	B and D
Pattern 23	B and E and F
Pattern 24	B
Pattern 25	B and F and
Pattern 26	C and D and E
Pattern 27	C and D a
Pattern 28	C and D
Pattern 29	C and E and
Pattern 30	C and E and G
Pattern 31	C and F and
Pattern 32	D and E an
Pattern 33	D and E and
Pattern 34	D and F and G
Pattern 35	E

Choosing k among n items without considering the order in which they are chosen is called a combination. The number of different ways this can be done is written by using the binomial coefficient notation:

$$
\binom{\boldsymbol{n}}{\boldsymbol{k}}
$$

which is read " n choose k."
In our case,

$$
\binom{7}{3}=35
$$

2. In how many ways can the three songs be arranged?

Let's assume we chose the songs A, B, and C. This table illustrates the 6 different ways in which they can be arranged:

Song 1	Song 2	Song 3
A	B	C
A	C	B
B	A	C
B	C	A
C	A	B
C	B	A

Suppose we choose B, E, and G instead:

Song 1	Song 2	Song 3
B	E	G
B	G	E
E	B	G
E	G	B
G	B	E
G	E	B

Trying a few other selections will reveal a pattern: The number of possible arrangements does not depend on which three elements we choose-there are always six of them. Here's why:

Our result (6) can be rewritten as $3 \cdot 2 \cdot 1$, which we get like this:

1. We start out with all three songs and can choose any one of them as our first song.
2. When we're picking our second song, only two remain to choose from.
3. For our last song, we're left with only one choice.

This gives us 3 possibilities $\cdot 2$ possibilities $\cdot 1$ possibility $=6$ possibilities.
3. In how many ways can a CD be made, where three songs are chosen from a pool of seven?

The different possible patterns are

The number of ways The number of ways to choose three songs • the three songs can from seven

$$
\begin{aligned}
& =\binom{7}{3} \cdot 6 \\
& =35 \cdot 6 \\
& =210
\end{aligned}
$$

be arranged

This means that there are 210 different ways to make the CD.

Choosing three from seven items in a certain order creates a permutation of the chosen items. The number of possible permutations of k objects chosen among n objects is written as

$$
{ }_{n} P_{k}
$$

In our case, this comes to

$$
{ }_{7} P_{3}=210
$$

The number of ways n objects can be chosen among n possible ones is equal to n-factorial:

$$
{ }_{n} P_{n}=n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1
$$

For instance, we could use this if we wanted to know how many different ways seven objects can be arranged. The answer is

$$
7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040
$$

I've listed all possible ways to choose three songs from the seven original ones (A, B, C, D, E, F, and G) in the table below.

	Song 1	Song 2	Song 3
Pattern 1	A	B	C
Pattern 2	A	B	D
Pattern 3	A	B	E
\cdots
Pattern 30	A	G	F
Pattern 31	B	A	C
...
Pattern 60	B	G	F
Pattern 61	C	A	B
...	\ldots	\ldots	\cdots
Pattern 90	C	G	F
Pattern 91	D	A	B
...
Pattern 120	D	G	F
Pattern 121	E	A	B
...
Pattern 150	E	G	F
Pattern 151	F	A	B
...
Pattern 180	F	G	E
Pattern 181	G	A	B
...	\ldots
Pattern 209	G	E	F
Pattern 210	G	F	E

We can, analogous to the previous example, rewrite our problem of counting the different ways in which to make a CD as $7 \cdot 6 \cdot 5=210$. Here's how we get those numbers:

1. We can choose any of the $\mathbf{7}$ songs A, B, C, D, E, F, and G as our first song.
2. We can then choose any of the $\mathbf{6}$ remaining songs as our second song.
3. And finally we choose any of the now 5 remaining songs as our last song.

The definition of the binomial coefficient is as follows:

$$
\binom{n}{r}=\frac{n \cdot(n-1) \cdots(n-(r-1))}{r \cdot(r-1) \cdots 1}=\frac{n \cdot(n-1) \cdots(n-r+1)}{r \cdot(r-1) \cdots 1}
$$

Notice that

$$
\begin{aligned}
\binom{n}{r} & =\frac{n \cdot(n-1) \cdots(n-(r-1))}{r \cdot(r-1) \cdots 1} \\
& =\frac{n \cdot(n-1) \cdots(n-(r-1))}{r \cdot(r-1) \cdots 1} \cdot \frac{(n-r) \cdot(n-r+1) \cdots 1}{(n-r) \cdot(n-r+1) \cdots 1} \\
& =\frac{n \cdot(n-1) \cdots(n-(r-1)) \cdot(n-r) \cdot(n-r+1) \cdots 1}{(r \cdot(r-1) \cdots 1) \cdot((n-r) \cdot(n-r+1) \cdots 1)} \\
& =\frac{n!}{r!\cdot(n-r)!}
\end{aligned}
$$

Many people find it easier to remember the second version:

$$
\binom{n}{r}=\frac{n!}{r!\cdot(n-r)!}
$$

We can rewrite question 3 (how many ways can the $C D$ be made?) like this:

$$
{ }_{7} P_{3}=\binom{7}{3} \cdot 6=\binom{7}{3} \cdot 3!=\frac{7!}{3!\cdot 4!} \cdot 3!=\frac{7!}{4!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1}=7 \cdot 6 \cdot 5=210
$$

NOT ALL "RULES FOR ORDERING" ARE FUNCTIONS

We talked about the three commands "Order the cheapest one!" "Order different stuff!" and "Order what you want!" as functions on pages 37-38. It is important to note, however, that "Order different stuff!" isn't actually a function in the strictest sense, because there are several different ways to obey that command.

[^0]: 40 CHAPTER 2 THE FUNDAMENTALS

