
This chapter covers four basic concepts in
PowerShell: variables, data types, objects,

and data structures. These concepts are funda-
mental to just about every common programming

language, but there’s something that makes PowerShell
distinctive: everything in PowerShell is an object.

This may not mean much to you now, but keep it in mind as you move
through the rest of this chapter. By the end of the chapter, you should have
an idea of just how significant this is.

Variables
A variable is a place to store values. You can think of a variable as a digital
box. When you want to use a value multiple times, for example, you can put
it in a box. Then, instead of typing the same number over and over in your
code, you can put it in a variable and call that variable whenever you need
the value. But as you might have guessed from the name, the real power of

2
B A S I C P O W E R S H E L L C O N C E P T S

14 Chapter 2

a variable is that it can change: you can add stuff to a box, swap what’s in
the box with something else, or take out whatever’s in there and show it off
for a bit before putting it back.

As you’ll see later in the book, this variability lets you build code that
can handle a general situation, as opposed to being tailored to one specific
scenario. This section covers the basic ways to use a variable.

Displaying and Changing a Variable
All variables in PowerShell start with a dollar sign ($), which indicates to
PowerShell that you are calling a variable and not a cmdlet, function, script
file, or executable file. For example, if you want to display the value of the
MaximumHistoryCount variable, you have to prepend it with a dollar sign and
call it, as in Listing 2-1.

PS> $MaximumHistoryCount
4096

Listing 2-1: Calling the $MaximumHistoryCount variable

The $MaximumHistoryCount variable is a built-in variable that determines
the maximum number of commands PowerShell saves in its command his-
tory; the default is 4096 commands.

You can change a variable’s value by entering the variable name—start-
ing with a dollar sign—and then using an equal sign (=) and the new value,
as in Listing 2-2.

PS> $MaximumHistoryCount = 200
PS> $MaximumHistoryCount
200

Listing 2-2: Changing the $MaximumHistoryCount variable’s value

Here you’ve changed the $MaximumHistoryCount variable’s value to 200,
meaning PowerShell will save only the previous 200 commands in its
command history.

Listings 2-1 and 2-2 use a variable that already exists. Variables in
PowerShell come in two broad classes: user-defined variables, which are cre-
ated by the user, and automatic variables, which already exist in PowerShell.
Let’s look at user-defined variables first.

User-Defined Variables
A variable needs to exist before you can use it. Try typing $color into your
PowerShell console, as shown in Listing 2-3.

PS> $color
The variable '$color' cannot be retrieved because it has not been set.

At line:1 char:1
+ $color
+ ~~~~

Basic PowerShell Concepts 15

 + CategoryInfo : InvalidOperation: (color:String) [], RuntimeException
 + FullyQualifiedErrorId : VariableIsUndefined

Listing 2-3: Entering an undefined variable results in an error.

T UR NING ON S T R IC T MODE

If you didn’t get the error in Listing 2-3, and your console shows no output, try
running the following command to turn on strict mode:

PS> Set-StrictMode -Version Latest

Turning on strict mode tells PowerShell to throw errors when you violate
good coding practices. For example, strict mode forces PowerShell to return an
error when you reference an object property that doesn’t exist or an undefined
variable. It’s considered best practice to turn on this mode when writing scripts,
as it forces you to write cleaner, more predictable code. When simply running
interactive code from the PowerShell console, this setting is typically not used.
For more information about strict mode, run Get Help Set-StrictMode Examples.

In Listing 2-3, you tried to refer to the $color variable before it even
existed, which resulted in an error. To create a variable, you need to declare
it—say that it exists—and then assign a value to it (or initialize it). You can
do these at the same time, as in Listing 2-4, which creates a variable $color
that contains the value blue. You can assign a value to a variable by using the
same technique you used to change the value of $MaximumHistoryCount—by
entering the variable name, followed by the equal sign, and then the value.

PS> $color = 'blue'

Listing 2-4: Creating a color variable with a value of blue

Once you’ve created the variable and assigned it a value, you can refer-
ence it by typing the variable name in the console (Listing 2-5).

PS> $color
blue

Listing 2-5: Checking the value of a variable

The value of a variable won’t change unless something, or someone,
explicitly changes it. You can call the $color variable any number of times,
and it will return the value blue each time until the variable is redefined.

When you use the equal sign to define a variable (Listing 2-4), you’re
doing the same thing you’d do with the Set-Variable command. Likewise,
when you type a variable into the console, and it prints out the value, as in

16 Chapter 2

Listing 2-5, you’re doing the same thing you’d do with the Get-Variable com-
mand. Listing 2-6 recreates Listings 2-4 and 2-5 by using these commands.

PS> Set-Variable -Name color -Value blue

PS> Get-Variable -Name color

Name Value
---- -----
color blue

Listing 2-6: Creating a variable and displaying its value with the Set-Variable and
Get-Variable commands

You can also use Get-Variable to return all available variables (as shown
in Listing 2-7).

PS> Get-Variable

Name Value
---- -----
$ Get-PSDrive
? True
^ Get-PSDrive
args {}
color blue
--snip--

Listing 2-7: Using Get-Variable to return all the variables.

This command will list all the variables currently in memory, but notice
that there are some you haven’t defined. You’ll look at this type of variable
in the next section.

Automatic Variables
Earlier I introduced automatic variables, the premade variables that Power-
Shell itself uses. Although PowerShell allows you to change some of these
variables, as you did in Listing 2-2, I typically advise against it because unex-
pected consequences can arise. In general, you should treat automatic vari-
ables as read-only. (Now might be a good time to change $MaximumHistoryCount
back to 4096!)

This section covers a few of the automatic variables that you’re likely
to use: the $null variable, $LASTEXITCODE, and the preference variables.

The $null Variable

The $null variable is a strange one: it represents nothing. Assigning $null to
a variable allows you to create that variable but not assign a real value to it,
as in Listing 2-8.

Basic PowerShell Concepts 17

PS> $foo = $null
PS> $foo
PS> $bar
The variable '$bar' cannot be retrieved because it has not been set.
At line:1 char:1
+ $bar
+ ~~~~
 + CategoryInfo : InvalidOperation: (bar:String) [], RuntimeException
 + FullyQualifiedErrorId : VariableIsUndefined

Listing 2-8: Assigning variables to $null

Here, you assign $null to the $foo variable. Then, when you call $foo,
nothing is displayed, but no errors occur because PowerShell recognizes
the variable.

You can see which variables PowerShell recognizes by passing parame-
ters to the Get-Variable command. You can see in Listing 2-9 that PowerShell
knows that the $foo variable exists but does not recognize the $bar variable.

PS> Get-Variable -Name foo

Name Value
---- -----
foo

PS> Get-Variable -Name bar
Get-Variable : Cannot find a variable with the name 'bar'.
At line:1 char:1
+ Get-Variable -Name bar
+ ~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (bar:String) [Get-Variable], ItemNotFoundException
 + FullyQualifiedErrorId : VariableNotFound,Microsoft.PowerShell.Commands.GetVariableCommand

Listing 2-9: Using Get-Variable to find variables

You may be wondering why we bother defining anything as $null. But
$null is surprisingly useful. For example, as you’ll see later in this chapter,
you often give a variable a value as a response to something else, like the
output of a certain function. If you check that variable, and see that its
value is still $null, you’ll know that something went wrong in the function
and can act accordingly.

The LASTEXITCODE Variable

Another commonly used automatic variable is $LASTEXITCODE. PowerShell
allows you to invoke external executable applications like the old-school
ping.exe, which pings a website to get a response. When external appli-
cations finish running, they finish with an exit code, or return code, that

18 Chapter 2

indicates a message. Typically, a 0 indicates success, and anything else
means either a failure or another anomaly. For ping.exe, a 0 indicates it
was able to successfully ping a node, and a 1 indicates it could not.

When ping.exe runs, as in Listing 2-10, you’ll see the expected out-
put but not an exit code. That’s because the exit code is hidden inside
$LASTEXITCODE. The value of $LASTEXITCODE is always the exit code of the last
application that was executed. Listing 2-10 pings google.com, returns its exit
code, and then pings a nonexistent domain and returns its exit code.

PS> ping.exe -n 1 dfdfdfdfd.com

Pinging dfdfdfdfd.com [14.63.216.242] with 32 bytes of data:
Request timed out.

Ping statistics for 14.63.216.242:
 Packets: Sent = 1, Received = 0, Lost = 1 (100% loss),
PS> $LASTEXITCODE
1
PS> ping.exe -n 1 google.com

Pinging google.com [2607:f8b0:4004:80c::200e] with 32 bytes of data:
Reply from 2607:f8b0:4004:80c::200e: time=47ms

Ping statistics for 2607:f8b0:4004:80c::200e:
 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 47ms, Maximum = 47ms, Average = 47ms
PS> $LASTEXITCODE
0

Listing 2-10: Using ping.exe to demonstrate the $LASTEXITCODE variable

The $LASTEXITCODE is 0 when you ping google.com but has a value of 1 when
you ping the bogus domain name dfdfdfdfd.com.

The Preference Variables

PowerShell has a type of automatic variable referred to as preference variables.
These variables control the default behavior of various output streams:
Error, Warning, Verbose, Debug, and Information.

You can find a list of all of the preference variables by running Get
-Variable and filtering for all variables ending in Preference, as shown here:

PS> Get-Variable -Name *Preference

Name Value
---- -----
ConfirmPreference High
DebugPreference SilentlyContinue
ErrorActionPreference Continue
InformationPreference SilentlyContinue
ProgressPreference Continue

Basic PowerShell Concepts 19

VerbosePreference SilentlyContinue
WarningPreference Continue
WhatIfPreference False

These variables can be used to configure the various types of output
PowerShell can return. For example, if you’ve ever made a mistake and seen
that ugly red text, you’ve seen the Error output stream. Run the following
command to generate an error message:

PS> Get-Variable -Name 'doesnotexist'
Get-Variable : Cannot find a variable with the name 'doesnotexist'.
At line:1 char:1
+ Get-Variable -Name 'doesnotexist'
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (doesnotexist:String) [Get-Variable],
 ItemNotFoundException
 + FullyQualifiedErrorId : VariableNotFound,Microsoft.PowerShell.Commands.GetVariableCommand

You should have gotten a similar error message, as this is the default
behavior for the Error stream. If for whatever reason you didn’t want to be
bothered by this error text, and would rather nothing happen, you could
redefine the $ErrorActionPreference variable to SilentlyContinue or Ignore,
either of which will tell PowerShell not to output any error text:

PS> $ErrorActionPreference = 'SilentlyContinue'
PS> Get-Variable -Name 'doesnotexist'
PS>

As you can see, no error text is output. Ignoring error output is gener-
ally considered bad practice, so change the value of $ErrorActionPreference
back to Continue before proceeding. For more information on preference
variables, check out the about_help content by running Get-Help about
_Preference_Variables.

Data Types
PowerShell variables come in a variety of forms, or types. All the details
of PowerShell’s data types are beyond the scope of this chapter. What you
need to know is that PowerShell has several data types—including bools,
strings, and integers—and you can change a variable’s data type without
errors. The following code should run with no errors:

PS> $foo = 1
PS> $foo = 'one'
PS> $foo = $true

This is because PowerShell can figure out data types based on the val-
ues you provide it. What’s happening under the hood is a little too compli-
cated for this book, but it’s important you understand the basic types and
how they interact.

20 Chapter 2

Boolean Values
Just about every programming language uses booleans, which have a true or
false value (1 or 0). Booleans are used to represent binary conditions, like
a light switch being on or off. In PowerShell, booleans are called bools, and
the two boolean values are represented by the automatic variables $true and
$false. These automatic variables are hardcoded into PowerShell and can’t
be changed. Listing 2-11 shows how to set a variable to be $true or $false.

PS> $isOn = $true
PS> $isOn
True

Listing 2-11: Creating a bool variable

You’ll see a lot more of bools in Chapter 4.

Integers and Floating Points
You can represent numbers in PowerShell in two main ways: via integer or
floating-point data types.

Integer types

Integer data types hold only whole numbers and will round any decimal input
to the nearest integer. Integer data types come in signed and unsigned types.
Signed data types can store both positive and negative numbers; unsigned
data types store values with no sign.

By default, PowerShell stores integers by using the 32-bit signed Int32
type. The bit count determines how big (or small) a number the variable can
hold; in this case, anything in the range –2,147,483,648 to 2,147,483,647. For
numbers outside that range, you can use the 64-bit signed Int64 type, which
has a range of –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

Listing 2-12 shows an example of how PowerShell handles Int32 types.

u PS> $num = 1
PS> $num
1

v PS> $num.GetType().name
Int32

w PS> $num = 1.5
PS> $num.GetType().name
Double

x PS> [Int32]$num
2

Listing 2-12: Using an Int type to store different values

Let’s walk through each of these steps. Don’t worry about all the syntax;
for now, focus on the output. First, you create a variable $num and give it the
value of 1 u. Next, you check the type of $num v and see that PowerShell
interprets 1 as an Int32. You then change $num to hold a decimal value w

Basic PowerShell Concepts 21

and check the type again and see that PowerShell has changed the type to
Double. This is because PowerShell will change a variable’s type depending on
its value. But you can force PowerShell to treat a variable as a certain type by
casting that variable, as you do at the end by using the [Int32] syntax in front
of $num x. As you can see, when forced to treat 1.5 as an integer, PowerShell
rounds it up to 2.

Now let’s look at the Double type.

Floating-Point Types

The Double type belongs to the broader class of variables known as floating-
point variables. Although they can be used to represent whole numbers,
floating-point variables are most often used to represent decimals. The
other main type of floating-point variable is Float. I won’t go into the inter-
nal representation of the Float and Double types. What you need to know is
that although Float and Double are capable of representing decimal num-
bers, these types can be imprecise, as shown in Listing 2-13.

PS> $num = 0.1234567910
PS> $num.GetType().name
Double
PS> $num + $num
0.2469135782
PS> [Float]$num + [Float]$num
0.246913582086563

Listing 2-13: Precision errors with floating-point types

As you can see, PowerShell uses the Double type by default. But notice
what happens when you add $num to itself but cast both as a Float—you get a
strange answer. Again, the reasons are beyond the scope of this book, but
be aware that errors like this can happen when using Float and Double.

Strings
You’ve already seen this type of variable. When you defined the $color vari-
able in Listing 2-4, you didn’t just type $color = blue. Instead, you enclosed
the value in single quotes, which indicates to PowerShell that the value is a
series of letters, or a string. If you try to assign the blue value to $color with-
out the quotes, PowerShell will return an error:

PS> $color = blue
blue : The term 'blue' is not recognized as the name of a cmdlet, function, script file, or
operable program. Check the spelling of the name, or if a path was included, verify that the
path is correct and try again.
At line:1 char:10
+ $color = blue
+ ~~~~
 + CategoryInfo : ObjectNotFound: (blue:String) [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

22 Chapter 2

Without quotes, PowerShell interprets blue as a command and tries to
execute it. Because the command blue doesn’t exist, PowerShell returns
an error message that says so. To correctly define a string, you need to use
quotes around your value.

Combining Strings and Variables

Strings aren’t restricted to words; they can be phrases and sentences as well.
For instance, you can assign $sentence this string:

PS> $sentence = "Today, you learned that PowerShell loves the color blue"
PS> $sentence
Today, you learned that PowerShell loves the color blue

But maybe you want to use this same sentence, but with the words
PowerShell and blue as the values of variables. For instance, what if you have
a variable called $name, another called $language, and another called $color?
Listing 2-14 defines these variables by using other variables.

PS> $language = 'PowerShell'
PS> $color = 'blue'

PS> $sentence = "Today, you learned that $language loves the color $color"
PS> $sentence
Today, you learned that PowerShell loves the color blue

Listing 2-14: Inserting variables in strings

Notice the use of double quotes. Enclosing your sentence in single
quotes doesn’t achieve the intended result:

PS> 'Today, $name learned that $language loves the color $color'
Today, $name learned that $language loves the color $color

This isn’t just a weird bug. There’s an important difference between
single and double quotes in PowerShell.

Using Double vs. Single Quotes

When you’re assigning a variable a simple string, you can use single or
double quotes, as shown in Listing 2-15.

PS> $color = "yellow"
PS> $color
yellow
PS> $color = 'red'
PS> $color
red
PS> $color = ''
PS> $color

Basic PowerShell Concepts 23

PS> $color = "blue"
PS> $color
blue

Listing 2-15: Changing variable values by using single and double quotes

As you can see, it doesn’t matter which quotes you use to define a simple
string. So why did it matter when you had variables in your string? The answer
has to do with variable interpolation, or variable expansion. Normally, when
you enter $color by itself into the console and hit enter, PowerShell inter-
polates, or expands, that variable. These are fancy terms that mean Power-
Shell is reading the value inside a variable, or opening the box so you can
see inside. When you use double quotes to call a variable, the same thing
happens: the variable is expanded, as you can see in Listing 2-16.

PS> "$color"
blue
PS> '$color'
$color

Listing 2-16: Variable behavior inside a string

But notice what happens when you use single quotes: the console outputs
the variable itself, not its value. Single quotes tell PowerShell that you mean
exactly what you’re typing, whether that’s a word like blue or what looks like
a variable called $color. To PowerShell, it doesn’t matter. It won’t look past
the value in single quotes. So when you use a variable inside single quotes,
PowerShell doesn’t know to expand that variable’s value. This is why you
need to use double quotes when inserting variables into your strings.

There’s much more to say about bools, integers, and strings. But for
now, let’s take a step back and look at something more general: objects.

Objects
In PowerShell, everything is an object. In technical terms, an object is an indi-
vidual instance of a specific template, called a class. A class specifies the kinds
of things an object will contain. An object’s class determines its methods, or
actions that can be taken on that object. In other words, the methods are
all the things an object can do. For example, a list object might have a sort()
method that, when called, will sort the list. Likewise, an object’s class deter-
mines its properties, the object’s variables. You can think of the properties as
all the data about the object. In the case of the list object, you might have a
length property that stores the number of elements in the list. Sometimes,
a class will provide default values for the object’s properties, but more often
than not, these are values you will provide to the objects you work with.

But that’s all very abstract. Let’s consider an example: a car. The car
starts out as a plan in the design phase. This plan, or template, defines how
the car should look, what kind of engine it should have, what kind of chassis

24 Chapter 2

it should have, and so on. The plan also lays out what the car will be able to
do once it’s complete—move forward, move in reverse, and open and close
the sunroof. You can think of this plan as the car’s class.

Each car is built from this class, and all of that particular car’s proper-
ties and methods are added to it. One car might be blue, while the same
model car might be red, and another car may have a different transmission.
These attributes are the properties of a specific car object. Likewise, each of
the cars will drive forward, drive in reverse, and have the same method to
open and close the sunroof. These actions are the car’s methods.

Now with that general understanding of how objects work, let’s get our
hands dirty and work with PowerShell.

Inspecting Properties
First, let’s make a simple object so you can dissect it and uncover the vari-
ous facets of a PowerShell object. Listing 2-17 creates a simple string object
called $color.

PS> $color = 'red'
PS> $color
red

Listing 2-17: Creating a string object

Notice that when you call $color, you get only the variable’s value. But
typically, because they’re objects, variables have more information than just
their value. They also have properties.

To look at an object’s properties, you’ll use the Select-Object command
and the Property parameter. You’ll pass the Property an asterisk argument,
as in Listing 2-18, to tell PowerShell to return everything it finds.

PS> Select-Object -InputObject $color -Property *

Length

 3

Listing 2-18: Investigating object properties

As you can see, the $color string has only a single property, called Length.
You can directly reference the Length property by using dot notation: you

use the name of the object, followed by a dot and the name of the property
you want to access (see Listing 2-19).

PS> $color.Length
3

Listing 2-19: Using dot notation to check an object’s property

Referencing objects like this will become second nature over time.

Basic PowerShell Concepts 25

Using the Get-Member cmdlet
Using Select-Object, you discovered that the $color string has only a single
property. But recall that objects sometimes have methods as well. To take a
look at all the methods and properties that exist on this string object, you can
use the Get-Member cmdlet (Listing 2-20); this cmdlet will be your best friend
for a long time. It’s an easy way to quickly list all of a particular object’s prop-
erties and methods, collectively referred to as an object’s members.

PS> Get-Member -InputObject $color

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone(), System.Object ICloneable.Clone()
CompareTo Method int CompareTo(System.Object value),
 int CompareTo(string strB), int IComparab...
Contains Method bool Contains(string value)
CopyTo Method void CopyTo(int sourceIndex, char[] destination,
 int destinationIndex, int co...
EndsWith Method bool EndsWith(string value),
 bool EndsWith(string value, System.StringCompari...
Equals Method bool Equals(System.Object obj),
 bool Equals(string value), bool Equals(string...
--snip--
Length Property int Length {get;}

Listing 2-20: Using Get-Member to investigate object properties and methods

Now we’re talking! It turns out that your simple string object has quite
a few methods associated with it. There are lots more to explore, but not all
are shown here. The number of methods and properties an object will have
depends on its parent class.

Calling Methods
You can reference methods with dot notation. However, unlike a property, a
method will always end in a set of opening and closing parentheses and can
take one or more parameters.

For example, suppose you want to remove a character in your $color
variable. You can remove characters from a string by using the Remove()
method. Let’s isolate $color’s Remove() method with the code in Listing 2-21.

PS> Get-Member -InputObject $color –Name Remove
Name MemberType Definition
---- ---------- ----------
Remove Method string Remove(int startIndex, int count), string Remove(int startIndex)

Listing 2-21: Looking at a string’s Remove() method

26 Chapter 2

As you can see, there are two definitions. This means you can use the
method in two ways: either with startIndex and the count parameter, or with
just startIndex.

So to remove the second character in $color, you specify the place of
the character where you’d like to start removing, which we call the index.
Indexes start from 0, so the first letter has a starting place of 0, the second
an index of 1, and so on. Along with an index, you can provide the number
of characters you’d like to remove by using a comma to separate the param-
eter arguments, as in Listing 2-22.

PS> $color.Remove(1,1)
Rd
PS> $color
red

Listing 2-22: Calling methods

Using an index of 1, you’ve told PowerShell that you want to remove
characters starting with the string’s second character; the second argument
tells PowerShell to remove just one character. So you get Rd. But notice that
the Remove() method doesn’t permanently change the value of a string vari-
able. If you’d like to keep this change, you’d need to assign the output of
the Remove() method to a variable, as shown in Listing 2-23.

PS> $newColor = $color.Remove(1,1)
PS> $newColor
Rd

Listing 2-23: Capturing output of the Remove() method on a string

N O T E If you need to know whether a method returns an object (as Remove() does) or modi-
fies an existing object, you can check its description. As you can see in Listing 2-21,
Remove()’s definition has the word string in front of it; this means that the function
returns a new string. Functions with the word void in front typically modify existing
objects. Chapter 6 covers this topic in more depth.

In these examples, you’ve used one of the simplest types of object, the
string. In the next section, you’ll take a look at some more complex objects.

Data Structures
A data structure is a way to organize multiple pieces of data. Like the data they
organize, data structures in PowerShell are represented by objects stored in
variables. They come in three main types: arrays, ArrayLists, and hashtables.

Arrays
So far, I’ve described a variable as a box. But if a simple variable (such as
a Float type) is a single box, then an array is whole bunch of boxes taped
together—a list of items represented by a single variable.

Basic PowerShell Concepts 27

Often you’ll need several related variables—say, a standard set of colors.
Rather than storing each color as a separate string, and then referencing
each of those individual variables, it’s much more efficient to store all of
those colors in a single data structure. This section will show you how to
create, access, modify, and add to an array.

Defining Arrays

First, let’s define a variable called $colorPicker and assign it an array that
holds four colors as strings. To do this, you use the at sign (@) followed by the
four strings (separated by commas) within parentheses, as in Listing 2-24.

PS> $colorPicker = @('blue','white','yellow','black')
PS> $colorPicker
blue
white
yellow
black

Listing 2-24: Creating an array

The @ sign followed by an opening parenthesis and zero or more
elements separated by a comma signals to PowerShell that you’d like to
create an array.

Notice that after calling $colorPicker, PowerShell displays each of the
array’s elements on a new line. In the next section, you’ll learn how to
access each element individually.

Reading Array Elements

To access an element in an array, you use the name of the array followed
by a pair of square brackets ([]) that contain the index of the element
you want to access. As with string characters, you start numbering arrays
at 0, so the first element is at index 0, the second at index 1, and so on.
In PowerShell, using –1 as the index will return the final element.

Listing 2-25 accesses several elements in our $colorPicker array.

PS> $colorPicker[0]
blue
PS> $colorPicker[2]
yellow
PS> $colorPicker[3]
black
PS> $colorPicker[4]
Index was outside the bounds of the array.
At line:1 char:1
+ $colorPicker[4]
+ ~~~~~~~~~~~~~~~
 + CategoryInfo : OperationStopped: (:) [], IndexOutOfRangeException
 + FullyQualifiedErrorId : System.IndexOutOfRangeException

Listing 2-25: Reading array elements

28 Chapter 2

As you can see, if you try to specify an index number that doesn’t exist
in the array, PowerShell will return an error message.

To access multiple elements in an array at the same time, you can use the
range operator (..) between two numbers. The range operator will make Power-
Shell return those two numbers and every number between them, like so:

PS> 1..3
1
2
3

To use the range operator to access multiple items in an array, you use
a range for an index, as shown here:

PS> $colorPicker[1..3]
white
yellow
black

Now that you’ve seen how to access elements in an array, let’s look at
how to change them.

Modifying Elements in an Array

If you want to change an element in an array, you don’t have to redefine the
entire array. Instead, you can reference an item with its index and use the
equal sign to assign a new value, as in Listing 2-26.

PS> $colorPicker[3]
black
PS> $colorPicker[3] = 'white'
PS> $colorPicker[3]
white

Listing 2-26: Modifying elements in an array

Make sure you double-check that the index number is correct by dis-
playing the element to your console before you modify an element.

Adding Elements to an Array

You can add items to an array with the addition operator (+), as in Listing 2-27.

PS> $colorPicker = $colorPicker + 'orange'
PS> $colorPicker
blue
white
yellow
white
orange

Listing 2-27: Adding a single item to an array

Basic PowerShell Concepts 29

Notice that you enter $colorPicker on both sides of the equal sign. This
is because you are asking PowerShell to interpolate the $colorPicker variable
and then add a new element.

The + method works, but there’s a quicker, more readable way. You can
use the plus and equal signs together to form += (see Listing 2-28).

PS> $colorPicker += 'brown'
PS> $colorPicker
blue
white
yellow
white
orange
brown

Listing 2-28: Using the += shortcut to add an item to an array

The += operator tells PowerShell to add this item to the existing array. This
shortcut prevents you from having to type out the array name twice and is
much more common than using the full syntax.

You can also add arrays to other arrays. Say you’d like to add the colors
pink and cyan to your $colorPicker example. Listing 2-29 defines another
array with just those two colors and adds them just as you did in Listing 2-28.

PS> $colorPicker += @('pink','cyan')
PS> $colorPicker
blue
white
yellow
white
orange
brown
pink
cyan

Listing 2-29: Adding multiple elements to an array at once

Adding multiple items at once can save you a lot of time, especially if
you’re creating an array with a large number of items. Note that PowerShell
treats any comma-separated set of values as an array, and you don’t explic-
itly need the @ or parentheses.

Unfortunately, there is no equivalent of += to remove an element from
an array. Removing elements from an array is more complicated than you
might think, and we won’t cover it here. To understand why, read on!

ArrayLists
Something strange happens when you add to an array. Every time you add
an element to an array, you’re actually creating a new array from your old
(interpolated) array and the new element. The same thing happens when
you remove an element from an array: PowerShell destroys your old array
and makes a new one. This is because arrays in PowerShell have a fixed size.

30 Chapter 2

When you change them, you can’t modify the size, so you have to create a
new array. For small arrays like the ones we’ve been working with, you won’t
notice this happening. But when you begin to work with huge arrays, with tens
or hundreds of thousands of elements, you’ll see a big performance hit.

If you know you’ll have to remove or add many elements to an array,
I suggest you use a different data structure called an ArrayList. ArrayLists
behave nearly identically to the typical PowerShell array, but with one crucial
difference: they don’t have a fixed size. They can dynamically adjust to added
or removed elements, giving a much higher performance when working with
large amounts of data.

Defining an ArrayList is exactly like defining an array, except that you
need to cast it as an ArrayList. Listing 2-30 re-creates the color picker array
but casts it as a System.Collections.ArrayList type.

PS> $colorPicker = [System.Collections.ArrayList]@('blue','white','yellow', 'black')
PS> $colorPicker
blue
white
yellow
black

Listing 2-30: Creating an ArrayList

As with an array, when you call an ArrayList, each item is displayed on a
separate line.

Adding Elements to an ArrayList

To add or remove an element from an ArrayList without destroying it, you
can use its methods. You can use the Add() and Remove() methods to add or
remove items from an ArrayList. Listing 2-31 uses the Add() method and
enters the new element within the method’s parentheses.

PS> $colorPicker.Add('gray')
4

Listing 2-31: Adding a single item to an ArrayList

Notice the output: the number 4, which is the index of the new element
you added. Typically, you won’t use this number, so you can send the Add()
method output to the $null variable to prevent it from outputting anything,
as shown in Listing 2-32.

PS> $null = $colorPicker.Add('gray')

Listing 2-32: Sending output to $null

There are a few ways to negate output from PowerShell commands, but
assigning output to $null gives the best performance, as the $null variable
cannot be reassigned.

Basic PowerShell Concepts 31

Removing Elements from an ArrayList

You can remove elements in a similar way, using the Remove() method. For
example, if you want to remove the value gray from the ArrayList, enter the
value within the method’s parentheses, as in Listing 2-33.

PS> $colorPicker.Remove('gray')

Listing 2-33: Removing an item from an ArrayList

Notice that to remove an item, you don’t have to know the index number.
You can reference the element by its actual value—in this case, gray. If the
array has multiple elements with the same value, PowerShell will remove the
element closest to the start of the ArrayList.

It’s hard to see the performance difference with small examples like
these. But ArrayLists perform much better on large datasets than arrays.
As with most programming choices, you’ll need to analyze your specific
situation to determine whether it makes more sense to use an array or an
ArrayList. The rule of thumb is the larger the collection of items you’re
working with, the better off you’ll be using an ArrayList. If you’re working
with small arrays of fewer than 100 elements or so, you’ll notice little differ-
ence between an array and an ArrayList.

Hashtables
Arrays and ArrayLists are great when you need your data associated with
only a position in a list. But sometimes you’ll want something more direct:
a way to correlate two pieces of data. For example, you might have a list of
usernames you want to match to real names. In that case, you could use a
hashtable (or dictionary), a PowerShell data structure that contains a list of
key-value pairs. Instead of using a numeric index, you give PowerShell an
input, called a key, and it returns the value associated with that key. So, in
our example, you would index into the hashtable by using the username,
and it would return that user’s real name.

Listing 2-34 defines a hashtable, called $users, that holds information
about three users.

PS> $users = @{
 abertram = 'Adam Bertram'
 raquelcer = 'Raquel Cerillo'
 zheng21 = 'Justin Zheng'
}
PS> $users
Name Value
---- -----
abertram Adam Bertram
raquelcer Raquel Cerillo
zheng21 Justin Zheng

Listing 2-34: Creating a hashtable

32 Chapter 2

PowerShell will not let you define a hashtable with duplicate keys. Each
key has to uniquely point to a single value, which can be an array or even
another hashtable!

Reading Elements from Hashtables

To access a specific value in a hashtable, you use its key. There are two ways
to do this. Say you want to find out the real name of the user abertram. You
could use either of the two approaches shown in Listing 2-35.

PS> $users['abertram']
Adam Bertram
PS> $users.abertram
Adam Bertram

Listing 2-35: Accessing a hashtable’s value

The two options have subtle differences, but for now, you can choose
whichever method you prefer.

The second command in Listing 2-35 uses a property: $users.abertram.
PowerShell will add each key to the object’s properties. If you want to see all
the keys and values a hashtable has, you can access the Keys and Values prop-
erties, as in Listing 2-36.

PS> $users.Keys
abertram
raquelcer
zheng21
PS> $users.Values
Adam Bertram
Raquel Cerillo
Justin Zheng

Listing 2-36: Reading hashtable keys and values

If you want to see all the properties of a hashtable (or any object), you
can run this command:

PS> Select-Object -InputObject $yourobject -Property *

Adding and Modifying Hashtable Items

To add an element to a hashtable, you can use the Add() method or create a
new index by using square brackets and an equal sign. Both ways are shown
in Listing 2-37.

PS> $users.Add('natice', 'Natalie Ice')
PS> $users['phrigo'] = 'Phil Rigo'

Listing 2-37: Adding an item to a hashtable

Basic PowerShell Concepts 33

Now your hashtable stores five users. But what happens if you need to
change one of the values in your hashtable?

When you’re modifying a hashtable, it’s always a good idea to check
that the key-value pair you want exists. To check whether a key already
exists in a hashtable, you can use the ContainsKey() method, part of every
hashtable created in PowerShell. When the hashtable contains the key, it
will return True; otherwise, it will return False, as shown in Listing 2-38.

PS> $users.ContainsKey('johnnyq')
False

Listing 2-38: Checking items in a hashtable

Once you’ve confirmed the key is in the hashtable, you can modify its
value by using a simple equal sign, as shown in Listing 2-39.

PS> $users['phrigo'] = 'Phoebe Rigo'
PS> $users['phrigo']
Phoebe Rigo

Listing 2-39: Modifying a hashtable value

As you’ve seen, you can add items to a hashtable in a couple of ways.
As you’ll see in the next section, there’s only one way to remove an item
from a hashtable.

Removing Items from a Hashtable

Like ArrayLists, hashtables have a Remove() method. Simply call it and pass
in the key value of the item you want to remove, as in Listing 2-40.

PS> $users.Remove('natice')

Listing 2-40: Removing an item from a hashtable

One of your users should be gone, but you can call the hashtable to
double-check. Remember that you can use the Keys property to remind
yourself of any key name.

Creating Custom Objects
So far in this chapter, you’ve been making and using types of objects built
into PowerShell. Most of the time, you can stick with these types and save
yourself the work of creating your own. But sometimes you’ll need to create
a custom object with properties and methods that you define.

Listing 2-41 uses the New-Object cmdlet to define a new object with a
PSCustomObject type.

34 Chapter 2

PS> $myFirstCustomObject = New-Object -TypeName PSCustomObject

Listing 2-41: Creating a custom object by using New-Object

This example uses the New-Object command, but you could do the
same thing by using an equal sign and a cast, as in Listing 2-42. You
define a hashtable in which the keys are property names, and the values
are property values, and then cast it as PSCustomObject.

PS> $myFirstCustomObject = [PSCustomObject]@{OSBuild = 'x'; OSVersion = 'y'}

Listing 2-42: Creating a custom object by using the PSCustomObject type accelerator

Notice that Listing 2-42 uses a semicolon (;) to separate the key and
value definitions.

Once you have a custom object, you use it as you would any other
object. Listing 2-43 passes our custom object to the Get_Member cmdlet to
check that it is a PSCustomObject type.

PS> Get-Member -InputObject $myFirstCustomObject

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
OSBuild NoteProperty string OSBuild=OSBuild
OSVersion NoteProperty string OSVersion=Version

Listing 2-43: Investigating properties and methods of a custom object

As you can see, your object already has some preexisting methods (for
example, one that returns the object’s type!), along with the properties you
defined when you created the object in Listing 2-42.

Let’s access those properties by using dot notation:

PS> $myFirstCustomObject.OSBuild
x
PS> $myFirstCustomObject.OSVersion
y

Looks good! You’ll use PSCustomObject objects a lot throughout the rest of
the book. They’re powerful tools that let you create much more flexible code.

Basic PowerShell Concepts 35

Summary
By now, you should have a general understanding of objects, variables, and
data types. If you still don’t understand these concepts, please reread this
chapter. This is some of the most foundational stuff we’ll be covering. A
high-level understanding of these concepts will make the rest of this book
much easier to understand.

The next chapter covers two ways to combine commands in PowerShell:
the pipeline and scripts.

