
9
A N A LY Z I N G  L O C A T I O N  D A T A

Everything happens somewhere. That’s 
why the location of an object can be just as 

important as its nonspatial attributes for the 
purposes of data analysis. In fact, spatial and 

nonspatial data often go hand in hand.
As an example, consider a ride-sharing app. Once you’ve ordered a 

ride, you might want to track the location of the car on a map in real time 
while it’s heading to you. You might also want know some basic nonspatial 
information about the car and driver assigned to your order: the make and 
model of the car, the driver’s rating, and so on.

In the last chapter, you saw how to work with location data to generate 
maps. In this chapter, you’ll learn more about how to use Python to collect 
and analyze location data, and you’ll see how to integrate both spatial and 
nonspatial data in your analysis. Throughout, we’ll consider the example of 
a taxi management service, and we’ll try to answer the central question of 
which cab should be assigned to a particular job.

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E
Y U L I  V A S I L I E V

2/25/22



146   Chapter 9

Obtaining Location Data
The first step in performing a spatial analysis is to obtain location data for 
the objects of interest. In particular, this location data should take the form 
of geographical coordinates (geo coordinates for short); that is, latitude and lon-
gitude values. This coordinate system enables every location on the planet 
to be specified as a set of numbers, meaning the locations can be analyzed 
programatically. In this section, we’ll consider ways to obtain the geo coor-
dinates of both stationary and moving objects. This will demonstrate how 
our example taxi service might determine a customer’s pick-up location, as 
well as the real-time locations of its various cabs.

Turning a Human-Readable Address into Geo Coordinates
Most humans think in terms of street names and building numbers rather 
than geo coordinates. That’s why it’s common for taxi services, food deliv-
ery apps, and the like to let users specify pick-up and drop-off locations as 
street addresses. Behind the scenes, however, many of these services convert 
human-readable addresses into the corresponding geo coordinates. That 
way the app can perform calculations with the location data, such as deter-
mining the nearest available cab to the specified pick-up location.

How do you convert from street addresses to geo coordinates? One way 
is to use Geocoding, an API provided by Google for this purpose. For that, 
you’ll also need to get an API key using a Google Cloud account. For infor-
mation about acquiring an API key, see https://developers.google.com/maps/
documentation/geocoding/get-api-key. Details on the API’s cost structure are 
available at https://cloud.google.com/maps-platform/pricing. As of this writing 
Google provides a $200 monthly credit to API users, which is enough for 
you to experiment with the code in this book.

To interact with the Geocoding API from a Python script, you'll need to 
use the googlemaps library. Install it using the pip command, as follows:

$ pip install -U googlemaps

You’ll also need to get an API key for the Geocoding API, using a 
Google Cloud account. For information about acquiring an API key, see 
https://developers.google.com/maps/documentation/geocoding/get-api-key. Details 
on the API’s cost structure are available at https://cloud.google.com/maps-plat-
form/pricing. As of this writing Google provides a $200 monthly credit to API 
users, which is enough for you to experiment with the code in this book.

The following script illustrates a sample call to the Geocoding API using 
googlemaps. This call obtains the latitude and longitude coordinates corre-
sponding to the address 1600 Amphitheatre Parkway, Mountain View, CA:

import googlemaps

gmaps = googlemaps.Client(key='YOUR_API_KEY_HERE')
address = '1600 Amphitheatre Parkway, Mountain View, CA'

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E
Y U L I  V A S I L I E V

2/25/22

https://developers.google.com/maps/documentation/geocoding/get-api-key
https://developers.google.com/maps/documentation/geocoding/get-api-key
https://cloud.google.com/maps-platform/pricing
https://developers.google.com/maps/documentation/geocoding/get-api-key
https://cloud.google.com/maps-platform/pricing
https://cloud.google.com/maps-platform/pricing


Analyzing Location Data   147

geocode_result = gmaps.geocode(address)

print(geocode_result[0]['geometry']['location'].values())

In this script, you establish a connection to the API and send the address 
you want to convert. The API returns a JSON document with a nested 
structure. The geo coordinates are stored under the key location, which is 
a subfield of geometry. In the last line you access and print the coordinates, 
yielding the following output:

dict_values([37.422388, -122.0841883])

Getting the Geo Coordinates of a Moving Object
You now know how to obtain the geo coordinates of a fixed location via its 
street address, but how can you get the real-time geo coordinates of a moving 
object, such as a taxi? Some taxi services might use specialized GPS devices 
for this purpose, but we’ll focus instead on a low-cost, easy-to-implement solu-
tion. All that’s required is a smartphone.

Smartphones detect their location with built-in GPS sensors and can be 
tuned to share that information. Here, we’ll look at how to collect smart-
phone GPS coordinates via the popular messaging app Telegram. Using 
the Telegram Bot API, you’ll create a bot, an application that runs within 
Telegram. Bots are commonly used for natural language processing, but 
this one will collect and log the geolocation data of Telegram users who 
choose to share their data with the bot.

Setting Up a Telegram BOT

To create a Telegram bot, you’ll need to download the Telegram app and 
create an account. Then follow these steps, using either a smartphone or 
a PC:

1. In the Telegram app, search for @BotFather. BotFather is a Telegram
bot that manages all the other bots in your account.

2. On the BotFather page, click Start to see the list of commands that you
can use to set up your Telegram bots.

3. Enter /newbot in the message box. You’ll be prompted for a name and
a username for your bot. Then you’ll be given an authorization token
for the new bot. Take note of this token: you’ll need it when you pro-
gram the bot.

After completing these steps, you can implement the bot with Python
using the python-telegram-bot library. Install the library like so:

$ pip install python-telegram-bot –upgrade

The tools you’ll need to program the bot are in the library’s telegram.ext 
module. It’s built on top of the Telegram Bot API.

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E
Y U L I  V A S I L I E V

2/25/22



148   Chapter 9

Programming the Bot

Here, you use the telegram.ext module of the python-telegram-bot library to 
program the bot to listen for and log GPS coordinates:

from telegram.ext import Updater, MessageHandler, Filters
from datetime import datetime
import csv

1 def get_location(update, context):
  msg = None
  if update.edited_message:
    msg = update.edited_message
  else:
    msg = update.message
2 gps = msg.location
  sender = msg.from_user.username
  tm = datetime.now().strftime("%H:%M:%S")
  with open(r'/HOME/PI/LOCATION_BOT/LOG.CSV', 'a') as f:
    writer = csv.writer(f)
  3 writer.writerow([sender, gps.latitude, gps.longitude, tm])
  4 context.bot.send_message(chat_id=msg.chat_id, text=str(gps))

def main():
5 updater = Updater('TOKEN', use_context=True)
6 updater.dispatcher.add_handler(MessageHandler(Filters.location,
                                 get_location))

  7 updater.start_polling()
  8 updater.idle()

if __name__ == '__main__':
    main()

The main() function contains the common invocations found in a script 
implementing a Telegram bot. You start by creating an Updater object 5, pass-
ing it your bot’s authorization token (generated by BotFather). This object 
orchestrates the bot execution process throughout the script. You then use 
the Dispatcher object associated with the Updater to add a handler function 
called get_location() for incoming messages 6. By specifying Filters.location, 
you add a filter to the handler so it will only be called when the bot receives 
messages that include the sender’s location data. You start the bot by invoking 
the start_polling() method of the Updater object 7. Because start_polling() 
is a non-blocking method, you also have to call the Updater object’s idle() 
method 8 in order to block the script until a message is received. 

At the beginning of the script, you define the get_location() handler 1. 
Within the handler, you store the incoming message as msg, then you extract 
the sender’s location data using the message’s location property 2. You 
also log the sender’s username and generate a string containing the cur-
rent time. Then, using Python’s csv module, you store all this information 
as a row in a CSV file 3 at a location of your choice. You also transmit the 
location data back to the sender, so they know that their location has been 
received 4. 

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



Analyzing Location Data   149

Getting Data from the Bot

Run the script on an internet-connected machine. Once it’s running, users 
can follow a few simple steps to start sharing their real-time location data 
with the bot: 

1. Create a Telegram account.

2. In Telegram, tap the name of the bot.

3. Tap the Paperclip icon and select Location from the menu.

4. Choose Share My Location For and set how long Telegram will share live 
location data with the bot. Options include 15 minutes, 1 hour, or 8 hours.

The screenshot in Figure 9-1 shows how easy it is to share your real-time 
location in Telegram.

Figure 9-1: Sharing your smartphone’s  
live location in Telegram

Once users start sharing their location data, the bot will start sending 
that data to a CSV file in the form of rows that might look as follows:

cab_26,43.602508,39.715685,14:47:44
cab_112,43.582243,39.752077,14:47:55
cab_26,43.607480,39.721521,14:49:11
cab_112,43.579258,39.758944,14:49:51
cab_112,43.574906,39.766325,14:51:53
cab_26,43.612203,39.720491,14:52:48

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



150   Chapter 9

The first field in each row contains a username, the second and third 
fields contain the latitude and longitude of the user’s location , and the 
fourth field contains a timestamp. For some tasks, such as finding the clos-
est car to a certain pick-up location, you’d only need the latest row for each 
car. Other tasks, however, such as calculating the overall distance of a ride, 
would benefit from multiple rows of data for the given car, sorted by time.

Spatial Data Analysis with geopy and Shapely
Spatial data analysis boils down to answering questions about relationships: 
Which object is closest to a certain location? Are two objects in the same 
area? In this section, you’ll answer these common spatial analysis questions 
using two Python libraries, geopy and Shapely, all within the context of our 
example taxi service.

Since geopy is designed for performing calculations based on geo 
coordinates, it’s particularly suited for answering questions about distance. 
Meanwhile, Shapely specializes in defining and analyzing geometric planes, 
so it’s ideal for determining whether an object falls within a certain area. 
As you’ll see, both libraries can play a role in identifying the best cab for a 
given job.

Before you proceed, install the libraries as follows:

$ pip install geopy
$ pip install shapely

Finding the Closest Object
Continuing with our taxi service example, we’ll look at how to use location 
data to identify the closest cab to a pick-up place. To start, you’ll need some 
sample location data. If you deployed the Telegram bot discussed in the 
previous section, you may already have some data in the form of a CSV file. 
Here, you load the data into a pandas DataFrame so you can easily sort and 
filter it:

import pandas as pd
df = pd.read_csv("HOME/PI/LOCATION_BOT/LOG.CSV", names=['cab', 'lat',
                                                        'long', 'tm'])

If you didn’t deploy a Telegram bot, you can instead create a list of tuples 
with some sample location data and load it into a DataFrame as follows:

import pandas as pd
locations = [
  ('cab_26',43.602508,39.715685,'14:47:44'),
  ('cab_112',43.582243,39.752077,'14:47:55'),
  ('cab_26',43.607480,39.721521,'14:49:11'),
  ('cab_112',43.579258,39.758944,'14:49:51'),
  ('cab_112',43.574906,39.766325,'14:51:53'),
  ('cab_26',43.612203,39.720491,'14:52:48')

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



Analyzing Location Data   151

]

df = pd.DataFrame(locations, columns =['cab', 'lat', 'long', 'tm'])

Either way, you’ll get a DataFrame called df with columns for the cab 
ID, latitude, longitude, and timestamp.

N O T E  If you’d like to build your own set of sample location data to manipulate, a simple 
method is to look up latitude and longitude coordinates using Google Maps. When 
you right-click a location on a map, the location’s latitude and longitude coordinates 
will be the first thing to show up in the menu.

The DataFrame has multiple rows for each cab, but to identify the cab 
closest to a pick-up place you only need each cab’s most recent location. You 
can filter out the unnecessary rows as follows:

latestrows = df.sort_values(['cab','tm'],ascending=False).drop_duplicates('cab')

Here, you sort the rows by the cab and tm fields in descending order. 
This operation groups the dataset by the cab column and puts the latest 
row for each cab first within its group. Then you apply the drop_duplicates() 
method to eliminate all but the first row for each cab. The resulting lates-
trows DataFrame looks as follows:

       cab        lat       long        tm
5   cab_26  43.612203  39.720491  14:52:48
3  cab_112  43.574906  39.766325  14:51:53

You now have a DataFrame with just the most recent location data for 
each cab. For the convenience of future computing, you next convert the 
DataFrame into a simpler Python structure, a list of lists. This way you’ll be 
able to more easily append new fields to each row, such as a field for the dis-
tance between the cab and the pick-up place:

latestrows = latestrows.values.tolist()

The values property of latestrows returns a NumPy representation of the 
DataFrame, which you then convert to a list of lists using tolist().

You’re now ready to calculate the distance between each cab and a pick-
up place. You’ll use the geopy library, which can accomplish this task with 
just a few lines of code. Here you use the distance() function from geopy’s 
distance module to make the necessary calculations:

from geopy.distance import distance
pick_up = 43.578854, 39.754995

for i,row in enumerate(latestrows):
1 dist = distance(pick_up, (row[1],row[2])).m
  print(row[0] + ':', round(dist))
  latestrows[i].append(round(dist))

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



152   Chapter 9

For simplicity, you set the pick-up place by manually defining the 
latitude and longitude coordinates. In practice, however, you might use 
Google’s Geocoding API to generate the coordinates automatically from 
a street address, as discussed earlier in the chapter. Next, you iterate over 
each row in your dataset and calculate the distance between each cab and 
the pick-up place by calling distance() 1. This function takes two tuples 
containing latitude/longitude coordinates as arguments. By adding .m, you 
retrieve the distance in meters. For demonstration purposes, you’ll print 
the result of each distance calculation; then you append it to the end of the 
row as a new field. The script produces the following output:

cab_112: 1015
cab_26: 4636

Clearly cab_112 is closer, but how can you determine that programmati-
cally? Use Python’s built-in min() function, as follows:

closest = min(latestrows, key=lambda x: x[4])
print('The closest cab is: ', closest[0], ' - the distance in meters: ', closest[4])

You feed the data to min() and use a lambda function to evaluate its sort-
ing order based on the item at index 4 of each row. This is the newly appended 
distance calculation. You then print the result in a human-readable format, 
yielding the following:

The closest cab is:  cab_112  - the distance in meters:  1015

In this example, you calculated the straight-line distance between each 
cab and the pick-up location. While this information can certainly be use-
ful, real-world cars almost never drive in a perfectly straight line from one 
place to another. The layout of streets means that the actual distance a cab 
must drive to reach a pick-up location will be greater than the straight-line 
distance. With this in mind, next we’ll look at a more reliable way to match 
pick-up locations to cabs.

Finding Objects in a Certain Area
Often, the right question to ask to determine the best cab for a job isn’t 
“Which cab is the closest?” but rather “Which cab is in a certain area that 
includes the pick-up location?” This isn’t just because the driving distance 
between two points is almost always greater than the straight-line distance 
between them. In practice, barriers such as rivers or railroad tracks often 
divide geographical areas into separate zones that are only connected 
at a limited number of points by bridges, tunnels, and the like. This can 
make straight-line distances highly misleading. Consider the example in 
Figure 9-2.

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



Analyzing Location Data   153

Figure 9-2: Obstacles like  
rivers can make distance  
measurements misleading.

As you can see, cab_26 is spatially closest to the pick-up place in this sce-
nario, but because of the river, cab_112 will likely be able to get there faster. 
You can easily figure this out looking at the map, but how can you reach the 
same conclusion with a Python script? One way is to divide the area into a 
number of smaller polygons, or areas enclosed by a set of connected straight 
lines, and then check which cabs are within the same polygon as the pick-
up location.

In this particular example, you should define a polygon that encom-
passes the pick-up location and has a boundary along the river. You can 
identify the polygon’s boundaries manually through Google Maps: right-
click several points that connect to form a closed polygon, and note each 
point’s geo coordinates. Once you have the coordinates, you can define the 
polygon in Python using the Shapely library.

Here’s how to create a polygon with Shapely and check whether a given 
point is inside that polygon:

1 from shapely.geometry import Point, Polygon

coords = [(46.082991, 38.987384), (46.075489, 38.987599), (46.079395, 
           38.997684),(46.073822, 39.007297), (46.081741, 39.008842)]
2 poly = Polygon(coords)
3 cab_26 = Point(46.073852, 38.991890)
cab_112 = Point(46.078228, 39.003949)
pick_up = Point(46.080074, 38.991289)

4 print('cab_26 within the polygon:', cab_26.within(poly))
print('cab_112 within the polygon:', cab_112.within(poly))
print('pick_up within the polygon:', pick_up.within(poly))

You first import two Shapely classes, Point and Polygon 1, then you cre-
ate a Polygon object using a list of latitude/longitude tuples 2. This object 
represents the area north of the river, including the pick-up location. Next, 
you create several Point objects representing the locations of cab_26, cab_112, 
and the pick-up place, respectively 3. Finally, you perform a series of spatial 

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



154   Chapter 9

E X ERCISE: DEF INING T WO OR MOR E POLYGONS

In the preceding section, you used a single polygon covering an area on the map. Now try 
defining two or more polygons covering adjacent urban areas divided by an obstacle such 
as a river. Obtain coordinates for these polygons using the Google map of your own city or 
town, or of any other urban area on the planet. You’ll also need the coordinates of several 
points within those polygons to simulate the locations of some cabs and a pick-up place.

In your script, define the polygons with Shapely and group them into a dictionary, then 
group the points representing the cabs into another dictionary. Next, divide the cabs into 
groups based on which polygon they’re located in. This can be accomplished using two 
loops: the outer one to iterate over the polygons and the inner one to iterate over the points 
representing the cabs, checking whether a point is within a polygon on each iteration of the 
inner loop. The following code fragment illustrates how this might be implemented:

--snip--
cabs_dict ={}
polygons = {'poly1': poly1, 'poly2': poly2}
cabs = {'cab_26': cab_26, 'cab_112': cab_112}
for poly_name, poly in polygons.items():
  cabs_dict[poly_name] = []
  for cab_name, cab in cabs.items():
    if cab.within(poly):
      cabs_dict[poly_name].append(cab_name)
--snip--

Next, you’ll need to determine which polygon contains the pick-up place. Once you 
know it, you can select the corresponding list of cabs from the cabs_dict dictionary, using the 
name of the polygon as the key. Finally, use geopy to determine which cab within the chosen 
polygon is closest to the pick-up location.

queries to detect if a certain point is inside the polygon using Shapely’s 
within() method 4. As a result, the script should produce the following 
output:

cab_26 within the polygon: False
cab_112 within the polygon: True
pick_up within the polygon: True

Combining Both Approaches
So far, we’ve chosen the best cab for a pick-up by calculating linear dis-
tances and by finding the closest cab within a certain area. In fact, the 
most accurate way to find the right cab may be to use elements of both 
approaches. This is because it isn’t necessarily safe to blindly exclude all 
the cabs that aren’t in the same polygon as the pick-up location. A cab in 
an adjacent polygon may still be closest in terms of actual driving distance, 
even allowing for the possibility that the cab must get around a river or 

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



Analyzing Location Data   155

other obstacle. The key is to consider the entry points between one polygon 
and another. Figure 9-3 shows how we might take this into account.

=

Figure 9-3: Using entry points to connect adjacent areas

The dotted line running across the middle of the figure represents the 
boundary dividing the area into two polygons: the one north of the river 
and the one south of the river. The equal sign laid on the bridge marks the 
entry point where cabs can move from one polygon to the other. For cabs in 
the polygon bordering that of the pick-up place, the distance to the pick-up 
place is composed of two intervals: the interval between the cab’s current 
location and the entry point, and the interval between the entry point and 
the pick-up place.

To find the closest cab, you should therefore determine which polygon 
each cab is in and use that determination to decide how to calculate the 
distance from that cab to the pick-up location: either a direct straight-line dis-
tance if the cab is in the same polygon as the pick-up location, or the distance 
by way of the entry point if it’s in an adjacent polygon. Here you make that 
calculation just for cab_26:

from shapely.geometry import Point, Polygon
from geopy.distance import distance

coords = [(46.082991, 38.987384), (46.075489, 38.987599), (46.079395,
           38.997684),(46.073822, 39.007297), (46.081741, 39.008842)]
1 poly = Polygon(coords)
2 cab_26 = Point(46.073852, 38.991890)
pick_up = Point(46.080074, 38.991289)
entry_point = Point(46.075357, 39.000298)

if cab_26.within(poly):
3 dist = distance((pick_up.x, pick_up.y), (cab_26.x,cab_26.y)).m
else:
4 dist = distance((cab_26.x,cab_26.y), (entry_point.x,entry_point.y)).m +
         distance((entry_point.x,entry_point.y), (pick_up.x, pick_up.y)).m

print(round(dist))

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



156   Chapter 9

E X ERCISE: F UR T HER IMPROV ING T HE PICK-UP A LGOR IT HM

In the script we just discussed, you processed the location data related to a single cab to 
determine the distance between this cab and the pick-up place. Modify the script so that it 
can determine the distances between the pick-up place and each of several cabs. You’ll need 
to group the points representing cabs into a list and then process this list in a loop, using the 
if/else statement from the preceding script as the loop’s body. Then identify the closest cab 
to the pick-up place.

The script uses both Shapely and geopy. First you define a Shapely 
Polygon object including the pick-up location, as before 1. You likewise 
define Point objects for the cab, the pick-up location, and the entry point 2. 
Then you calculate the distance in meters with the help of geopy’s distance() 
function. If the cab is within the polygon, you find the distance directly 
between the cab and the pick-up location 3. If not, you first calculate the 
distance between the cab and the entry point and then the distance between 
the entry point and the pick-up place, summing them to get the total dis-
tance 4. Here’s the result:

1544

Combining Spatial and Nonspatial Data
So far in this chapter you’ve worked exclusively with spatial data, but it’s 
important to realize that spatial analyses often need to factor in nonspatial 
data as well. For example, what’s the use of knowing that a store is located 
within 10 miles of your current location if you don’t know whether the item 
you want is currently in stock there? Or, turning back to our taxi example, 
what’s the use of being able to determine the closest cab to a pick-up loca-
tion if you don’t know whether that cab is available or currently serving 
another order? In this section, we’ll examine how to account for nonspatial 
data as part of a spatial analysis.

Deriving Nonspatial Attributes
Information about the current availability of cabs could be derived from 
a dataset containing ride orders. Once an order is assigned to a cab, this 
information might be placed in an orders data structure, where orders are 
listed as either open (in process) or closed (completed). According to this 
scheme, identifying only those orders that are open would tell you which 
cabs are unavailable to serve a new order. Here’s how you could implement 
this logic in Python:

import pandas as pd
orders = [
  ('order_039', 'open', 'cab_14'),

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



Analyzing Location Data   157

  ('order_034', 'open', 'cab_79'),
  ('order_032', 'open', 'cab_104'),
  ('order_026', 'closed', 'cab_79'),
  ('order_021', 'open', 'cab_45'),
  ('order_018', 'closed', 'cab_26'),
  ('order_008', 'closed', 'cab_112')
]

df_orders = pd.DataFrame(orders, columns =['order','status','cab'])
df_orders_open = df_orders[df_orders['status']=='open']
unavailable_list = df_orders_open['cab'].values.tolist()
print(unavailable_list)

The orders list of tuples used in this example might be derived from 
a more complete dataset, such as a collection of all the orders opened 
within the last two hours, that includes additional information about each 
order (pick-up location, drop-off location, start time, end time, and so on). 
For simplicity, here the dataset has already been reduced to just the fields 
needed for the current task. You convert the list into a DataFrame, then fil-
ter it to include only the orders whose status is open. Finally, you convert the 
DataFrame into a list containing only the values from the cab column. This 
list of unavailable cabs looks as follows:

['cab_14', 'cab_79', 'cab_104', 'cab_45']

Armed with this list, you need to check the other cabs and determine 
which is the closest to the pick-up place. Append this code to the previous 
script:

from geopy.distance import distance
pickup = 46.083822, 38.967845
cab_26 = 46.073852, 38.991890
cab_112 = 46.078228, 39.003949
cab_104 = 46.071226, 39.004947
cab_14 = 46.004859, 38.095825
cab_79 = 46.088621, 39.033929
cab_45 = 46.141225, 39.124934
cabs = {'cab_26': cab_26, 'cab_112': cab_112, 'cab_14': cab_14,
        'cab_104': cab_104, 'cab_79': cab_79, 'cab_45': cab_45}
dist_list = []

for cab_name, cab_loc in cabs.items():
  if cab_name not in unavailable_list:
    dist = distance(pickup, cab_loc).m
    dist_list.append((cab_name, round(dist)))

print(dist_list)
print(min(dist_list, key=lambda x: x[1]))

For the purposes of the example, you manually define the geo coordi-
nates of the pick-up place and all the cabs as tuples, and you send the coor-
dinates of the cabs to a dictionary, where the keys are the cab names. Then 

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



158   Chapter 9

E X ERCISE: F ILT ER ING DATA W IT H A L IS T COMPR EHENSION

In the preceding section, you filtered the orders list down to just a list of unavailable cabs by 
first converting orders to a DataFrame. Now try generating the unavailable_list list without 
pandas, using a list comprehension instead. With this approach, you can obtain the list of 
cabs assigned to currently open orders with a single line of code:

unavailable_list = [x[2] for x in orders if x[1] == 'open']

After this replacement, you won’t need to change anything else in the rest of the script.

you iterate over the dictionary, and for each cab not in unavailable_list, you 
use geopy to calculate the distance between the cab and the pick-up place. 
Finally, you print the entire list of available cabs with their distances to the 
pick-up place, as well as just the closest cab, yielding the following output:

[('cab_26', 2165), ('cab_112', 2861)]
('cab_26', 2165)

In this case, cab_26 is the closest available cab.

Joining Spatial and Nonspatial Datasets
In the previous example, you kept the spatial data (each cab’s location) and 
the nonspatial data (which cabs were available) in separate data structures. 
Sometimes, however, it may be advantageous to combine spatial and non-
spatial data in the same structure.

Consider that a cab may need to satisfy some other conditions apart 
from availability to be assigned to an order. For example, a client may need 
a cab with a baby seat. To find the right cab, you’ll need to rely on a dataset 
that includes nonspatial information about the cabs as well as each cab’s 
distance from the pick-up location. For the former, you may use a dataset 
that contains just two columns: the cab name and the presence of a baby 
seat. You create it here:

cabs_list = [
  ('cab_14',1),
  ('cab_79',0),
  ('cab_104',0),
  ('cab_45',1),
  ('cab_26',0),
  ('cab_112',1)
]

Cabs with a 1 in the second column have a baby seat. Next you con-
vert the list to a DataFrame. You also create a second DataFrame from 

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



Analyzing Location Data   159

dist_list, the list of available cabs and their distances to the pick-up 
place that you generated in the preceding section:

df_cabs = pd.DataFrame(cabs_list, columns =['cab', 'seat'])
df_dist = pd.DataFrame(dist_list, columns =['cab', 'dist'])

You now merge these DataFrames based on the cab column:

df = pd.merge(df_cabs, df_dist, on='cab', how='inner')

You use an inner join, meaning only cabs included in both df_cabs and 
df_dist make it into the new DataFrame. In practice, since df_dist contains 
only cabs that are currently available, this excludes unavailable cabs from 
the result set. The merged DataFrame now includes both spatial data (each 
cab’s distance to the pick-up place) and nonspatial data (whether or not 
each cab has a baby seat):

       cab  seat  dist
0   cab_26     0  2165
1  cab_112     1  2861

You convert the DataFrame into a list of tuples, which you then filter, 
leaving only the rows where the seat field is set to 1:

result_list = list(df.itertuples(index=False,name=None))
result_list = [x for x in result_list if x[1] == 1]

You use the DataFrame’s itertuples() method to convert each row into a 
tuple, then you wrap the tuples into a list with the list() function.

The final step is to determine the row with the lowest value in the dis-
tance field, which is identified by index 2:

print(min(result_list, key=lambda x: x[2]))

Here’s the result:

('cab_112', 1, 2861)

Compare this to the result shown at the end of the previous section. As you 
can see, the need for a baby seat led us to choose a different cab for the job.

Summary
Using the real-world example of a taxi service, this chapter illustrated how 
you can perform spatial data analyses. To start with, you looked at an example 
of turning a human-readable address into geo coordinates using Google’s 
Geocoding API and the googlemaps Python library. Then you learned to 
use a Telegram bot to collect location data from smartphones. Next, you 

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22



160   Chapter 9

used the geopy and Shapely libraries to perform fundamental geospatial 
operations, such as measuring the distance between points and determin-
ing if points are within a certain area. With the help of these libraries, 
built-in Python data structures, and pandas DataFrames, you designed an 
application to identify the best cab for a given pick-up, based on various 
spatial and nonspatial criteria.

Python for Data Science  (Sample Chapter) © 2/25/22 by Yuli Vasiliev

P Y T H O N  F O R  D A T A  S C I E N C E 
Y U L I  V A S I L I E V

2/25/22




