
6
TESTING

W riting, running, and fixing tests can feel like busywork. In fact, it’s

easy for tests to be busywork. Bad tests add developer overhead

without providing value and can increase test instability. This chapter

will teach you to test effectively. We’ll discuss what tests are used for, dif-

ferent test types, different test tools, how to test responsibly, and how to

deal with nondeterminism in tests.

The Many Uses of Tests
Most developers know the fundamental function of tests: tests check that

code works. But tests serve other purposes as well: they encourage clean

code, force developers to use their own APIs, document how components

are to be interacted with, and serve as a playground for experimentation.

Above all, tests verify that software behaves as expected. Unpredict-

able behavior causes problems for users, developers, and operators. Ini-

tially, tests show that code works as specified. Tests then remain to shield

existing behavior from new changes. When an old test fails, a decision

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

90 The Missing README

must be made: did the developer intend to change behavior, or was a bug

introduced?

Test writing also forces developers to think about the interface and

implementation of their program. Developers usually first interact with

their code in tests. New code will have rough edges; testing exposes

clumsy interface design early so it can be corrected. Tests also expose

messy implementation. Spaghetti code, or code that has too many

dependencies, is difficult to test. Writing tests forces developers to keep

their code well factored by improving separation of concerns and reduc-

ing tight coupling.

Code cleanliness side effects in tests are so strong that test-driven
development (TDD) has become commonplace. TDD is the practice of writ-

ing tests before code. The tests fail when written, and then code is writ-

ten to make them pass. TDD forces developers to think about behavior,

interface design, and integration before cranking out a bunch of code.

Test serve as a form of documentation, illustrating how the code is

meant to be interacted with. They are the first place an experienced pro-

grammer starts reading to understand a new codebase. Test suites are a

great playground. Developers run tests with debuggers attached to step

through code. As bugs are discovered, or questions about behavior arise,

new tests can be added to understand them.

Types of Tests
There are dozens of different test types and testing methodologies. Our

goal is not to cover the full breadth of this topic but to discuss the most

common types—unit, integration, system, performance, and acceptance

tests—to give you a firm foundation to build on.

Unit tests verify “units” of code—a single method or behavior. Unit

tests should be fast, small, and focused. Speed is important because these

tests run frequently—often on developer laptops. Small tests that focus

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

Testing 91

on a single unit of code make it easier to understand what has broken

when a test fails.

Integration tests verify that multiple components work together. If

you find yourself instantiating multiple objects that interact with each

other in a test, you’re probably writing an integration test. Integration

tests are often slower to execute and require a more elaborate setup than

unit tests. Developers run integration tests less frequently, so the feed-

back loop is longer. These tests can flush out problems that are difficult

to identify by testing standalone units individually.

IT’S ONLY OBVIOUS IN RETROSPECT

A few years ago, Dmitriy was shopping for a new dishwasher
appliance. He read online reviews, went to a store, dutifully exam-
ined all the specs, considered the trade-offs, and finally settled on
the model he liked best. The salesperson who insisted on guiding
Dmitriy through the aisles checked the inventory, got ready to put
in an order, and, just as his hand hovered over the ENTER key,
paused. “Is this dishwasher going into a corner in your kitchen, by
any chance?” “Why, yes, it is.” “And is there a drawer that comes
out of a cabinet at a 90-degree angle to where this dishwasher is
going, such that it slides into the space right in front of the dish-
washer door?” “Why, yes, there is such a drawer.” “Ah,” the sales-
person said, removing his hand from the keyboard. “You will want
a different dishwasher.” The model Dmitriy selected had a handle
that protruded from the door, which would have completely
blocked the drawer from coming out. The perfectly functioning
dishwasher and the perfectly functioning cabinet were completely
incompatible. Clearly, the salesperson had seen this particular
integration scenario fail before! (The solution was to purchase a
similar model with an inset door handle.)

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

92 The Missing README

System tests verify a whole system. End-to-end (e2e, for short) work-

flows are run to simulate real user interactions in preproduction environ-

ments. Approaches to system test automation vary. Some organizations

require that system tests pass before a release, which means all compo-

nents are tested and released in lockstep. Other organizations ship such

large systems that synchronizing releases is not realistic; these organi-

zations often run extensive integration tests and supplement them with

continuous synthetic monitoring production tests. Synthetic monitoring

scripts run in production to simulate user registration, browse for and

purchase an item, and so on. Synthetic monitoring requires instrumen-

tation that allows billing, accounting, and other systems to distinguish

these production tests from real activity. Synthetic monitoring is covered

more in Chapter 9.

Performance tests, such as load and stress tests, measure system perfor-

mance under different configurations. Load tests measure performance

under various levels of load: for example, how a system performs when

10, 100, or 1,000 users access it concurrently. Stress tests push system load

to the point of failure. Stress testing exposes how far a system is capable

of going and what happens under excessive load. These tests are useful

for capacity planning and defining service level objectives (see Chapter 9

for more details on these topics).

Acceptance tests are performed by a customer, or their proxy, to vali-

date that the delivered software meets acceptance criteria. These tests

are fairly common in enterprise software, where formal acceptance

tests and criteria are laid out as part of an expensive contract. The

International Standards Organization (ISO) requires acceptance tests

that validate explicit business requirements as part of their security

standard; certification auditors will ask for evidence of documentation

for both the requirements and the corresponding tests. Less formal

acceptance tests, found in less regulated organizations, are variations

on the theme of, “I just changed a thing, can you let me know if every-

thing still looks good?”

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

Testing 93

TESTING IN THE REAL WORLD

We looked at test setups of many successful open source proj-
ects while writing this chapter. Many projects were missing cer-
tain flavors of tests, while others were inconsistent about the
separation—intermingling “unit” and “integration” tests. It’s
important to know what these categories mean, and the trade-
offs between them. Still, don’t get too wrapped up in getting it
perfectly right. Successful projects make real-world pragmatic
testing decisions, and so should you. If you see an opportunity to
improve the tests and test suites, by all means, do it! Don’t get
hung up on naming and categorization, and refrain from passing
judgment if the setup is not quite right; code entropy from Chap-
ter 3 is a powerful force.

Test Tools
Test tools fall into several categories: test-writing tools, test execution

frameworks, and code quality tools. Test-writing tools like mocking librar-

ies help you write clean and efficient tests. Test frameworks help run tests

by modeling a test’s lifecycle from setup to teardown. Test frameworks also

save test results, integrate with build systems, and provide other helpers.

Code quality tools are used to analyze code coverage and code complexity,

find bugs through static analysis, and check for style errors. Analysis tools

are usually set up to run as part of a build or compile step.

Every tool added to your setup comes with baggage. Everyone must

understand the tool, along with all of its idiosyncrasies. The tool might

depend on many other libraries, which will further increase the com-

plexity of the system. Some tools slow tests down. Therefore, avoid out-

side tools until you can justify the complexity trade-offs, and make sure

your team is bought in.

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

94 The Missing README

Mocking
Mocking libraries are commonly used in unit tests, particularly in

object-oriented code. Code often depends on external systems, libraries,

or objects. Mocks replace external dependencies with stubs that mimic

the interface provided by the real system. Mocks implement functionality

required for the test by responding to inputs with hard-coded responses.

Eliminating external dependencies keeps unit tests fast and focused.

Mocking remote systems allows tests to bypass network calls, simpli-

fying the setup and avoiding slow operations. Mocking methods and

objects allows developers to write focused unit tests that exercise just

one specific behavior.

Mocks also keep application code from becoming riddled with test-

specific methods, parameters, or variables. Test-specific changes are dif-

ficult to maintain, make code hard to read, and cause confusing bugs

(don’t add Boolean isTest method parameters!). Mocks help developers

access protected methods and variables without modifying regular code.

While mocking is useful, don’t overdo it. Mocks with complex inter-

nal logic make your tests brittle and hard to understand. Start with basic

inline mocks inside a unit test, and don’t write a shared mock class until

you begin repeating mocking logic between tests.

An excessive reliance on mocks is a code smell that suggests tight

code coupling. Whenever reaching for a mock, consider whether code

could be refactored to remove the dependency on the mocked system.

Separating computation and data transformation logic from I/O code

helps simplify testing and makes the program less brittle.

Test Frameworks
Test frameworks help you write and execute tests. You’ll find frameworks

that help coordinate and execute unit tests, integration tests, perfor-

mance tests, and even UI tests. Frameworks do the following:

 ● Managing test setup and teardown

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

Testing 95

 ● Managing test execution and orchestration

 ● Generating test result reports

 ● Providing tooling such as extra assertion methods

 ● Integrating with code coverage tools

Setup and teardown methods allow developers to specify steps, such

as data structure setup or file cleanup, that need to be executed before or

after each test or set of tests. Many test frameworks give multiple options

for setup and teardown execution—before each test, before all tests in a

file, or before all tests in a build. Read documentation before using setup

and teardown methods to make sure you’re using them correctly. Don’t

expect teardown methods to run in all circumstances. For example, tear-

down won’t occur if a test fails catastrophically, causing the whole test

process to exit.

Test frameworks help control the speed and isolation of tests through

test orchestration. Tests can be executed serially or in parallel. Serial

tests are run one after the next. Running one test at a time is safer

because tests have less chance of impacting one another. Parallel execu-

tion is faster, but more error prone due to shared state, resources, or other

contamination.

Frameworks can be configured to start a new process between each

test. This further isolates tests, since each test will start fresh. Beware

that starting new processes for each test is an expensive operation. See

“Determinism in Tests” for more on test isolation.

Test reports help developers debug failed builds. Reports give a

detailed readout of which tests passed, failed, or were skipped. When

a test fails, reports show which assertion failed. Reports also organize

logs and stack traces per test so developers can quickly debug failures.

Beware, it’s not always obvious where test results are stored—a sum-

mary is printed to the console, while the full report is written to disk.

Look in test and build directories if you have trouble locating a report.

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

96 The Missing README

Code Quality Tools
Take advantage of tools that help you write quality code. Tools that

enforce code quality rules are called linters. Linters run static analysis

and perform style checks. Code quality monitoring tools report metrics

such as complexity and test coverage.

Static code analyzers look for common mistakes like leaving file han-

dles open or using unset variables. Static analyzers are particularly

important for dynamic languages like Python and JavaScript, which do

not have a compiler to catch syntax errors. Analyzers look for known code

smells and highlight questionable code but are not immune to false pos-

itives, so you should think critically about problems reported by static

analyzers and override false positives with code annotations that tell the

analyzer to ignore particular violations.

Code style checkers ensure all source code is formatted the same way:

max characters per line, proper indentation, camelCasing versus snake_

casing, that sort of thing. A consistent style helps multiple programmers

collaborate on a shared codebase. We highly recommend setting up your

IDE so that all style rules are automatically applied.

Code complexity tools guard against overly complex logic by calculat-

ing cyclomatic complexity, or, roughly, the number of paths through your

code. The higher your code’s complexity, the more difficult it is to test,

and the more defects it is likely to contain. Cyclomatic complexity gener-

ally increases with the size of the codebase, so a high overall score is not

necessarily bad; however, a sudden jump in complexity can be cause for

concern, as can individual methods of high complexity.

Code coverage tools measure how many lines of code were exercised by

the test suite. If your change lowers code coverage, you should write more

tests. Make sure that tests are exercising any new changes that you’ve

made. Aim for reasonable coverage (the rule of thumb is between 65 and

85 percent). Remember that coverage alone isn’t a good measure of test

quality: it can be quite misleading, both when it is high and when it is low.

Checking automatically generated code like scaffolding or serialization

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

Testing 97

classes can create misleadingly low coverage metrics. Conversely, obses-

sively creating unit tests to get to 100 percent coverage doesn’t guarantee

that your code will integrate safely.

Engineers have a tendency to fixate on code quality metrics. Just

because a tool finds a quality issue doesn’t mean that it’s actually a prob-

lem, nor does it mean that it’s worth fixing immediately. Be pragmatic

with codebases that fail quality checks. Don’t let code get worse, but avoid

disruptive stop-the-world cleanup projects. Use Chapter 4’s section on

technical debt as a guide to determine when to fix code quality issues.

Write Your Own Tests
You are responsible for making sure your team’s code works as expected.

Write your own tests; don’t expect others to clean up after you. Many

companies have formal quality assurance (QA) teams with varying respon-

sibilities, including the following:

 ● Writing black-box or white-box tests

 ● Writing performance tests

 ● Performing integration, user acceptance, or system tests

 ● Providing and maintaining test tools

 ● Maintaining test environments and infrastructure

 ● Defining formal test certification and release processes

QA teams can help you verify your code is stable, but never “throw

code over the fence” to have them do all of the testing. QA teams don’t

write unit tests anymore; those days are long gone. If you are in a company

with a formal QA team, find out what they are responsible for and how to

engage with them. If they’re embedded within your team, they are likely

attending scrum and sprint planning meetings (see Chapter 12 for more

on Agile development). If they’re a centralized organization, getting their

help might require opening tickets or submitting some formal request.

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

98 The Missing README

Write Clean Tests
Write tests with the same care that you write other code. Tests introduce

dependencies, require maintenance, and need to be refactored over time.

Hacky tests have a high maintenance cost, which slows down future

development. Hacky tests are also less stable and less likely to provide

reliable results.

Use good programming practices on tests. Document how tests work,

how they can be run, and why they were written. Avoid hard-coded

values, and don’t duplicate code. Use design best practices to maintain a

separation of concerns and to keep tests cohesive and decoupled.

Focus on testing fundamental functionality, rather than imple-

mentation details. This helps when the codebase gets refactored,

since tests will still run after the refactoring. If your test code is too

tightly coupled with implementation particulars, changes to the

main body of code will break tests. These breakages stop, meaning

something broke, and just signal that the code changed. This does not

provide value.

Keep test dependencies separate from your regular code dependen-

cies. If a test requires a library to run, don’t force the entire codebase

to depend on the library. Most build and packaging systems will allow

you to define dependencies specifically for tests; take advantage of this

feature.

Don’t Overdo Testing
Don’t get swept up writing tests. It’s easy to lose track of which tests are

worth writing. Avoid chasing higher code coverage just to boost coverage

metrics. Testing thin database wrappers, third-party libraries, or basic

variable assignment is worthless even if it boosts coverage metrics. Focus

on tests that have the largest effect on code risk.

Use code coverage as a guide, not a rule. High code coverage does not

guarantee correctness. Exercising code in a test counts toward coverage,

but it doesn’t mean that it was exercised usefully. It’s entirely possible

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

Testing 99

for critical errors to exist in codebases with 100 percent test coverage.

Chasing a specific code coverage percentage is myopic.

Don’t handcraft tests for autogenerated code such as web framework

scaffolding or OpenAPI clients. If your coverage tools aren’t configured

to ignore generated code, the tools will report the code as untested. Fix

the coverage tool configuration in such cases. Code generators are thor-

oughly tested, so testing generated code is a waste of time (unless you

manually introduce changes to generated files, in which case you should

test them). If for some reason you discover a real need to test generated

code, figure out a way to add tests to the generator.

Focus effort on the highest value tests. Tests take time to write and

maintain. Focusing on high-value tests yields the most benefit for the

cost. Use a risk matrix to find areas to focus on. A risk matrix defines risk

as the likelihood and impact of a failure.

Figure 6-1 is a sample risk matrix. The likelihood of a failure is mea-

sured on the y-axis, and the impact of the failure is measured on the x-axis.

The intersection of the event’s likelihood and impact defines its risk.

Tests shift code risk down the chart—more testing makes failures

less likely. Focus on high-likelihood, high-impact areas of the code first.

Low-risk or throwaway code like a proof of concept isn’t worth testing.

Negligible Minor Moderate Significant Severe

Very Likely Low Medium Medium Medium High High High

Likely Low Low Medium Medium Medium High High

Possible Low Low Medium Medium Medium High Medium High

Unlikely Low Low Medium Low Medium Medium Medium High

Very Unlikely Low Low Low Medium Medium Medium

Impact

Li
ke

lih
oo

d

Figure 6-1: Risk matrix (Source: https://wiki.riskscape.org.nz/index.php/File:Matrix.png)

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

https://wiki.riskscape.org.nz/index.php/File:Matrix.png

100 The Missing README

Determinism in Tests
Deterministic code always produces the same output for the same input.

By contrast, nondeterministic code can return different results for the

same inputs. A unit test that invokes a call to a remote web service on

a network socket is nondeterministic; if the network fails, the test will

fail. Nondeterministic tests are a problem that plague many projects. It’s

important to understand why nondeterministic tests are bad, how to fix

them, and how to avoid writing them.

Nondeterministic tests degrade test value. Intermittent test failures

(known as flapping tests) are hard to reproduce and debug because they

don’t happen every run, or even every tenth run. You don’t know whether

the problem is with the test or with your code. Because flapping tests

don’t provide meaningful information, developers might ignore them

and check in broken code as a result.

Intermittently failing tests should be disabled or fixed immediately.

Fix a flapping test by running it repeatedly in a loop to reproduce the

failure. IDEs have features to run tests iteratively, but a loop in a shell

also works. Sometimes the nondeterminism is caused by interactions

between tests or specific machine configurations—you’ll have to exper-

iment. Once you’ve reproduced the failure, you can fix it by eliminating

the nondeterminism, or fixing the bug.

Nondeterminism is often introduced by improper handling of sleep,

timeouts, and random number generation. Tests that leave side effects,

or interact with remote systems, also cause nondeterminism. Escape

nondeterminism by making time and randomness deterministic, clean-

ing up after tests, and avoiding network calls.

Seed Random Number Generators
Random number generators (RNGs) must be seeded with a value that dic-

tates the random numbers you get from it. By default, random number

generators will use the system clock as a seed. System clocks change over

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

Testing 101

time, so two runs of a test with a random number generator will yield

different results—nondeterminism.

Seed random number generators with a constant to force them to

deterministically generate the same sequence every time it runs. Tests

with constantly seeded generators will always pass or always fail.

Don’t Call Remote Systems in Unit Tests
Remote system calls require network hops, which are unstable. Network

calls can time out, which introduces nondeterminism into unit tests. A

test might pass hundreds of times and then fail once due to network tim-

eout. Remote systems are also unreliable; they can be shut off, restarted,

or frozen. If a remote system is degraded, your test will fail.

Avoiding remote calls (which are slow) also keeps unit tests fast and

portable. Speed and portability are critical for unit tests since developers

run them frequently, and locally on development machines. Unit tests

that depend on remote systems aren’t portable because a host machine

running a test must have access to the remote system, and remote test

systems are often in internal integration test environments that aren’t

easily reachable.

You can eliminate remote system calls in unit tests by using mocks or

by refactoring code so remote systems are only required for integration

tests.

Inject Clocks
Code that depends on specific intervals of time can cause nondetermin-

ism if not handled correctly. External factors like network latency and

CPU speed affect how long operations take, and system clocks progress

independently. Code that waits 500ms for something to happen is brit-

tle. A test will pass if the code runs in 499ms but fail when it runs in

501ms. Static system clock methods like now or sleep signal that your

code is time-dependent. Use injectable clocks rather than static time

methods so you can control the timing that your code sees in a test.

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

102 The Missing README

The following SimpleThrottler Ruby class illustrates the problem.

SimpleThrottler invokes a throttle method when the operation count

exceeds a threshold, but the clock is not injectable.

class SimpleThrottler
 def initialize(max_per_sec=1000)
 @max_per_sec = max_per_sec
 @last_sec = Time.now.to_i
 @count_this_sec = 0
 end

 def do_work
 @count_this_sec += 1
 # ...
 end

 def maybe_throttle
 if Time.now.to_i == @last_sec and @count_this_sec > @max_per_sec
 throttle()
 @count_this_sec = 0
 end
 @last_sec = Time.now.to_i
 end

 def throttle
 # ...
 end
end

In the previous example, we can’t guarantee that the maybe_throttle

condition will be triggered in a test. Two consecutive operations can take

an unbounded amount of time to run if the test machine is degraded, or

the operating system decides to schedule the test process unfairly. With-

out control of the clock, it’s impossible to test the throttling logic properly.

Instead, make system clocks injectable. Injectable clocks will let you

use mocks to precisely control the passage of time in your tests.

class SimpleThrottler
 def initialize(max_per_sec=1000, clock=Time)
 @max_per_sec = max_per_sec
 @clock = clock

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

Testing 103

 @last_sec = clock.now.to_i
 @count_this_sec = 0
 end

 def do_work
 @count_this_sec += 1
 # ...
 end

 def maybe_throttle
 if @clock.now.to_i == @last_sec and @count_this_sec > @max_per_sec
 throttle()
 @count_this_sec = 0
 end
 @last_sec = @clock.now.to_i
 end

 def throttle
 # ...
 end
end

This approach, called dependency injection, allows tests to override

clock behavior by injecting a mock into the clock parameter. The mock

can return integers that trigger maybe_throttle. Regular code can default

to the regular system clock.

Avoid Sleeps and Timeouts
Developers often use sleep() calls or timeouts when a test requires

work in a separate thread, process, or machine to complete before the

test can validate its results. The problem with this technique is that

it assumes that the other thread of execution will finish in a specific

amount of time, which is not something you can rely on. If the lan-

guage virtual machine or interpreter garbage collects or the operating

system decides to starve the process executing the test, your tests will

(sometimes) fail.

Sleeping in tests, or setting long timeouts, also slows down your test

execution and therefore your development and debugging process. If

you have a test that sleeps for 30 minutes, the fastest your tests will ever

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

104 The Missing README

execute is 30 minutes. If you have a high (or no) timeout, your tests can

get stuck.

If you find yourself tempted to sleep or set a timeout in a test, see if

you can restructure the test so that everything will execute determinis-

tically. If not, that’s okay, but make an honest effort. Determinism isn’t

always possible when testing concurrent or asynchronous code.

Close Network Sockets and File Handles
Many tests leak operating system resources because developers assume

that tests are short-lived and that the operating system will clean every-

thing when the test terminates. However, test execution frameworks

often use the same process for multiple tests, which means leaked

system resources like network sockets or file handles won’t be immedi-

ately cleaned.

Leaked resources cause nondeterminism. Operating systems have a

cap on the number of sockets and file handles and will begin rejecting

new requests when too many resources are leaked. A test that is unable

to open new socket or file handles will fail. Leaked network sockets also

break tests that use the same port. Even if tests are run serially, the

second will fail to bind to the port since it was opened but not closed

previously.

Use standard resource management techniques for narrowly scoped

resources, like try-with-resource, or with blocks. Resources that are

shared among tests should be closed using setup and teardown methods.

Bind to Port Zero
Tests should not bind to a specific network port. Static port binding

causes nondeterminism: a test that runs fine on one machine will fail on

another if the port is already taken. Binding all tests to the same port is

a common practice; these tests will run fine serially but fail when run in

parallel. Test failures will be nondeterministic since the ordering of test

execution isn’t always the same.

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

Testing 105

Instead, bind network sockets to port zero, which makes the operat-

ing system automatically pick an open port. Tests can retrieve the port

that was picked and use that value through the remainder of the test.

Generate Unique File and Database Paths
Tests should not write to statically defined locations. Data persistence

has the same problem as network port binding. Constant file paths and

database locations cause tests to interfere with each other.

Dynamically generate unique file names, directory paths, and data-

base or table names. Dynamic IDs let tests run in parallel since they

will all read and write to a separate location. Many languages provide

utility libraries to generate temporary directories safely (like tempfile in

Python). Appending UUIDs to file paths or database locations also works.

Isolate and Clean Up Leftover Test State
Tests that don’t clean up state cause nondeterminism. State exists any-

where that data persists, usually in memory or on disk. Global variables

like counters are common in-memory state, while databases and files are

common disk state. A test that inserts a database record and asserts that

one row exists will fail if another test has written to the same table. The

same test will pass when run alone on a clean database. Leftover state

also fills disk space, which destabilizes the test environment.

Integration test environments are complex to set up, so they are often

shared. Many tests run in parallel, reading and writing to the same data-

stores. Be careful in such environments, as sharing resources leads to

unexpected test behavior. Tests can affect each other’s performance and

stability. Shared datastores can cause tests to interfere with each other’s

data. Follow our guidance in the earlier “Generate Unique File and Data-

base Paths” section to avoid collisions.

You must reset state whether your tests pass or not; don’t let failed

tests leave debris behind. Use setup and teardown methods to delete

test files, clean databases, and reset in-memory test state between each

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

106 The Missing README

execution. Rebuild environments between test suite runs to rid test

machines of leftover state. Tools like containers or machine virtualiza-

tion make it easy to throw away entire machines and start new ones;

however, discarding and starting new virtual machines is slower than

running setup and teardown methods, so such tools are best used on

large groups of tests.

Don’t Depend on Test Order
Tests should not depend on a specific order of execution. Ordering

dependencies usually happen when a test writes data, and a subsequent

test assumes the data is written. This pattern is bad for many reasons:

 ● If the first test breaks, the second will break, too.

 ● It’s harder to parallelize the tests, since you can’t run the second

test until the first is done.

 ● Changes to the first test might accidentally break the second.

 ● Changes to the test runner might cause your tests to run in a dif-

ferent order.

Use setup and teardown methods to share logic between tests. Provi-

sion data for each test in the setup method, and clean up the data in the

teardown. Resetting state between each run will keep tests from break-

ing each other when they mutate the state.

Do’s and Don’ts
DO’S DON’TS

DO use tests to reproduce bugs. DON’T ignore the cost of adding new
testing tools.

DO use mocking tools to help write
unit tests.

DON’T depend on others to write tests
for you.

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

Testing 107

DO’S DON’TS

DO use code quality tools to verify cov-
erage, formatting, and complexity.

DON’T write tests just to boost code
coverage.

DO seed random number generators
in tests.

DON’T depend solely on code coverage
as a measure of quality.

DO close network sockets and file
handles in tests.

DON’T use avoidable sleeps and time-
outs in tests.

DO generate unique file paths and
database IDs in tests.

DON’T call remote systems in unit
tests.

DO clean up leftover test state
between test executions.

DON’T depend on test execution order.

Level Up
Many (long) books have been written on software testing. We suggest

targeting specific test techniques rather than reading exhaustive test

textbooks.

Unit Testing by Vladimir Khorikov is the place to go if you want more

on testing best practices. Unit Testing covers the philosophy of unit test-

ing and common unit test patterns and anti-patterns. Despite its name,

the book also touches on integration testing.

Kent Beck’s Test-Driven Development covers TDD in detail. TDD is a

great skill to have. If you find yourself in an organization that practices

TDD, this book is a must.

Look at The Pragmatic Programmer’s section on property-based testing.

We left property-based testing on the cutting room floor, but if you want

to expand your capabilities, property-based testing is a great technique

to learn.

Elisabeth Hendrickson’s Explore It! discusses exploratory testing to

learn about code. If you are dealing with complex code, Explore It! is a

good read.

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

The Missing README (Sample) © 5/10/21 by Chris Riccomini and Dmitriy Ryaboy

