
High-level languages shield programmers 
from the pain of dealing with low-level 

numeric representation. Writing great code, 
however, requires that you understand how 

computers represent numbers, so that is the focus of 
this chapter. Once you understand internal numeric 
representation, you’ll discover efficient ways to imple-
ment many algorithms and avoid the pitfalls associ-
ated with common programming practices. 

2.1 What Is a Number?
Having taught assembly language programming for many years, I’ve dis-
covered that most people don’t understand the fundamental difference 
between a number and the representation of that number. Most of the 
time, this confusion is harmless. However, many algorithms depend on 
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the internal and external representations we use for numbers to operate 
correctly and efficiently. If you don’t understand the difference between 
the abstract concept of a number and the representation of that number, 
you’ll have trouble understanding, using, or creating such algorithms.

A number is an intangible, abstract concept. It is an intellectual device 
that we use to denote quantity. Let’s say I told you that a book has one hun-
dred pages. You could touch the pages—they are tangible. You could even 
count those pages to verify that there are one hundred of them. However, 
“one hundred” is simply an abstraction I’m applying to the book as a way of 
describing its size.

The important thing to realize is that the following is not one hundred:
100

This is nothing more than ink on paper forming certain lines and 
curves (called glyphs). You might recognize this sequence of symbols as a 
representation of one hundred, but this is not the actual value 100. It’s just 
three symbols on this page. It isn’t even the only representation for one 
hundred—consider the following, which are all different representations 
of the value 100:

100 Decimal representation

C Roman numeral representation

6416 Base-16 (hexadecimal) representation

11001002 Base-2 (binary) representation

1448 Base-8 (octal) representation

one hundred English representation

The representation of a number is (generally) some sequence of sym-
bols. For example, the common representation of the value one hundred, 
“100,” is really a sequence of three numeric digits: the digit 1 followed by 
the digit 0 followed by a second 0 digit. Each of these digits has some spe-
cific meaning, but we could have just as easily used the sequence “64” to 
represent one hundred. Even the individual digits that make up this repre-
sentation of 100 are not numbers. They are numeric digits, tools we use to 
represent numbers, but they are not numbers themselves. 

Now you might be wondering why you should even care whether a 
sequence of symbols like “100” is the actual value one hundred or just the 
representation of it. The reason is that you’ll encounter several different 
sequences of symbols in a computer program that look like numbers (that 
is, they look like “100”), and you don’t want to confuse them with actual 
numeric values. Conversely, there are many different representations for 
the value one hundred that a computer could use, and it’s important for 
you to realize that they are equivalent. 
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2.2 Numbering Systems
A numbering system is a mechanism we use to represent numeric values. 
Today, most people use the decimal (or base-10) numbering system, and most 
computer systems use the binary (or base-2) numbering system. Confusion 
between the two can lead to poor coding practices.

The Arabs developed the decimal numbering system we commonly 
use today (this is why the 10 decimal digits are known as Arabic numerals). 
The decimal system uses positional notation to represent values with a small 
group of different symbols. Positional notation gives meaning not only to the 
symbol itself, but also to the position of the symbol in the sequence of sym-
bols—a scheme that is far superior to other, nonpositional, representations. 
To appreciate the difference between a positional system and a nonpositional 
system, consider the tallyslash representation of the number 25 in Figure 2-1.

Figure 2-1: Tally-slash representation of 25

The tally-slash representation uses a sequence of n marks to represent 
the value n. To make the values easier to read, most people arrange the tally 
marks in groups of five, as in Figure 2-1. The advantage of the tally-slash 
numbering system is that it’s easy to use for counting objects. However, the 
notation is bulky, and arithmetic operations are difficult. The biggest prob-
lem with the tally-slash representation is the amount of physical space it con-
sumes. To represent the value n requires an amount of space proportional to 
n. Therefore, for large values of n, this notation becomes unusable.

2.2.1 The Decimal Positional Numbering System
The decimal positional numbering system represents numbers using strings 
of Arabic numerals, optionally including a decimal point to separate whole 
and fractional portions of the number representation. The position of a 
digit in the string affects its meaning: each digit to the left of the decimal 
point represents a value between 0 and 9, multiplied by an increasing power 
of 10 (see Figure 2-2). The symbol immediately to the left of the decimal 
point in the sequence represents a value between 0 and 9. If there are 
at least two digits, the second symbol to the left of the decimal point rep-
resents a value between 0 and 9 times 10, and so forth. To the right of the 
decimal point, the values decrease. 

1 2 3 4 5

102 10 1 10 0 10–1 10–2

The magnitude associated with each digit is relative
to its distance from the decimal point.

Figure 2-2: A positional numbering system 



12   Chapter 2

The numeric sequence 123.45 represents:
(1 × 102) + (2 × 101) + (3 × 100) + (4 × 10–1) + (5 × 10–2)

or: 
100 + 20 + 3 + 0.4 + 0.05 

To understand the power of the base-10 positional numbering system, 
consider that, compared to the tally-slash system: 

•	 It can represent the value 10 in one-third the space.

•	 It can represent the value 100 in about 3 percent of the space.

•	 It can represent the value 1,000 in about 0.3 percent of the space.

As the numbers grow larger, the disparity becomes even greater. 
Because of their compact and easy-to-recognize notation, positional num-
bering systems are quite popular. 

2.2.2 Radix (Base) Values
Humans developed the decimal numbering system because it corresponds 
to the number of fingers (“digits”) on their hands. However, decimal isn’t 
the only positional numbering system possible; in fact, for most computer-
based applications, it isn’t even the best numbering system available. So, 
let’s take a look at how to represent values in other numbering systems.

The decimal positional numbering system uses powers of 10 and 10 
unique symbols for each digit position. Because decimal numbers use pow-
ers of 10, we call them “base-10” numbers. By substituting a different set of 
numeric digits and multiplying those digits by powers of some base other 
than 10, we can devise a different numbering system. The base, or radix, 
is the value that we raise to successive powers for each digit to the left of 
the radix point (note that the term decimal point applies only to decimal 
numbers).

As an example, we can create a base-8 (octal) numbering system using 
eight symbols (0–7) and successive powers of 8. Consider the octal number 
1238 (the subscript denotes the base using standard mathematical nota-
tion), which is equivalent to 8310:

1 × 82 + 2 × 81 + 3 × 80

or: 
64 + 16 + 3

To create a base-n numbering system, you need n unique digits. The 
smallest possible radix is 2 (for this scheme). For bases 2 through 10, the 
convention is to use the Arabic digits 0 through n − 1 (for a base-n sys-
tem). For bases greater than 10, the convention is to use the alphabetic 
digits a through z or A through Z (ignoring case) for digits greater than 
9. This scheme supports numbering systems through base 36 (10 numeric 
digits and 26 alphabetic digits). There’s no agreed-upon convention for 
symbols beyond the 10 Arabic numeric digits and the 26 alphabetic dig-
its. Throughout this book, we’ll deal with base-2, base-8, and base-16 val-
ues because base 2 (binary) is the native representation most computers 
use, base 8 was popular on older computer systems, and base 16 is more 
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compact than base 2. You’ll find that many programs use these three bases, 
so it’s important to be familiar with them.

2.2.3 The Binary Numbering System
Since you’re reading this book, chances are pretty good that you’re already 
familiar with the base-2, or binary, numbering system; nevertheless, a quick 
review is in order. The binary numbering system works just like the decimal 
numbering system, except binary uses only the digits 0 and 1 (rather than 
0–9) and uses powers of 2 (rather than powers of 10). 

Why even worry about binary? After all, almost every computer lan-
guage available allows programmers to use decimal notation (automatically 
converting decimal representation to the internal binary representation). 
Despite this capability, most modern computer systems talk to I/O devices 
using binary, and their arithmetic circuitry operates on binary data. Many 
algorithms depend upon binary representation for correct operation. In 
order to write great code, then, you’ll need a complete understanding of 
binary representation.

2.2.3.1 Converting Between Decimal and Binary Representation

To appreciate what the computer does for you, it’s useful to learn how to 
convert between decimal and binary representations manually.

To convert a binary value to decimal, add 2i for each 1 in the binary 
string, where i is the zero-based position of the binary digit. For example, 
the binary value 110010102 represents: 

1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

or:
128 + 64 + 8 + 2 

or:
20210

Converting decimal to binary is almost as easy. Here’s an algorithm that 
converts decimal representation to the corresponding binary representation:

1. If the number is even, emit a 0. If the number is odd, emit a 1.

2. Divide the number by 2 and discard any fractional component or 
remainder.

3. If the quotient is 0, the algorithm is complete.

4. If the quotient is not 0 and the number is odd, insert a 1 before the cur-
rent string. If the quotient is not 0 and the number is even, prefix your 
binary string with 0.

5. Go back to step 2 and repeat.

This example converts 202 to binary:

1. 202 is even, so emit a 0 and divide by 2 (101): 0

2. 101 is odd, so emit a 1 and divide by 2 (50): 10

3. 50 is even, so emit a 0 and divide by 2 (25): 010
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4. 25 is odd, so emit a 1 and divide by 2 (12): 1010

5. 12 is even, so emit a 0 and divide by 2 (6): 01010

6. 6 is even, so emit a 0 and divide by 2 (3): 001010

7. 3 is odd, so emit a 1 and divide by 2 (1): 1001010

8. 1 is odd, so emit a 2 and divide by 2 (0): 11001010

9. The result is 0, so the algorithm is complete, producing 11001010.

2.2.3.2 Making Binary Numbers Easier to Read

As you can tell by the equivalent representations 20210 and 110010102, 
binary representation is not as compact as decimal representation. We 
need some way to make the digits, or bits, in binary numbers less bulky 
and easier to read.

In the United States, most people separate every three digits with a 
comma to make larger numbers easier to read. For example, 1,023,435,208 
is much easier to read and comprehend than 1023435208. This book will 
adopt a similar convention for binary numbers; each group of 4 binary 
bits will be separated with an underscore. For example, the binary value 
10101111101100102 will be written as 1010_1111_1011_00102.

2.2.3.3 Representing Binary Values in Programming Languages

Thus far, this chapter has used the subscript notation embraced by mathe-
maticians to denote binary values (the lack of a subscript indicates the deci-
mal base). Subscripts are not generally recognized by program text editors 
or programming language compilers, however, so we need some other way 
to represent various bases within a standard ASCII text file. 

Generally, only assembly language compilers (“assemblers”) allow 
the use of literal binary constants in a program.1 Because assemblers vary 
widely, there are many different ways to represent binary literal constants in 
an assembly language program. This book presents examples using MASM 
and HLA, so it makes sense to adopt their conventions.

MASM represents binary values as a sequence of binary digits (0 and 1) 
ending with a b or B. The binary representation for 9 would be 1001b in a 
MASM source file.

HLA prefixes binary values with the percent symbol (%). To make 
binary numbers more readable, HLA also allows you to insert underscores 
within binary strings like so:

%11_1011_0010_1101

1. Swift also allows you to specify binary numbers, using a 0b prefix.
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2.2.4 The Hexadecimal Numbering System
As noted earlier, binary number representation is verbose. Hexadecimal 
representation offers two great features: it’s very compact, and it’s easy to 
convert between binary and hexadecimal. Therefore, software engineers 
generally use hexadecimal representation rather than binary to make their 
programs more readable.

Because hexadecimal representation is base 16, each digit to the left of 
the hexadecimal point represents some value times a successive power of 16. 
For example, the number 123416 is equal to: 

1 × 163 + 2 × 162 + 3 × 161 + 4 × 160

or: 
4096 + 512 + 48 + 4 

or:
466010

Hexadecimal representation uses the letters A through F for the addi-
tional six digits it requires (above the 10 standard decimal digits, 0–9). The 
following are all examples of valid hexadecimal numbers:

23416 DEAD16 BEEF16 0AFB16 FEED16 DEAF16

2.2.4.1 Representing Hexadecimal Values in Programming Languages

One problem with hexadecimal representation is that it’s difficult to differ-
entiate hexadecimal values like “DEAD” from standard program identifiers. 
Therefore, most programming languages use a special prefix or suffix char-
acter to denote hexadecimal values. Here’s how you specify literal hexadeci-
mal constants in several popular languages:

•	 The C, C++, C#, Java, Swift, and other C-derivative programming lan-
guages use the prefix 0x. You’d use the character sequence 0xdead for 
the hexadecimal value DEAD16.

•	 The MASM assembler uses an h or H suffix. Because this doesn’t com-
pletely resolve the ambiguity between certain identifiers and literal 
hexadecimal constants (for example, “deadh” still looks like an identi-
fier to MASM), it also requires that a hexadecimal value begin with 
a numeric digit. So, you would add 0 to the beginning of the value 
(because a prefix of 0 does not alter the value of a numeric representa-
tion) to get 0deadh, which unambiguously represents DEAD16.

•	 Visual Basic uses the &H or &h prefix. Continuing with the current exam-
ple, you’d use &Hdead to represent DEAD16 in Visual Basic.

•	 Pascal (Delphi) uses the prefix $. So, you’d use $dead to represent the 
current example in Delphi/Free Pascal.

•	 HLA also uses the prefix $. As with binary numbers, it also allows you to 
insert underscores into a hexadecimal number to make it easier to read 
(for example, $FDEC_A012).
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In general, this book will use the HLA/Delphi/Free Pascal format 
except in examples specific to other programming language. Because there 
are several C/C++ examples in this book, you’ll frequently see the C/C++ 
notation as well.

2.2.4.2 Converting Between Hexadecimal and Binary Representations

Another reason hexadecimal notation is popular is because it’s easy to convert 
between the binary and hexadecimal representations. By memorizing the few 
simple rules shown in Table 2-1, you can mentally perform this conversion. 

Table 2-1: Binary/Hexadecimal Conversion Chart

Binary Hexadecimal

%0000 $0

%0001 $1

%0010 $2

%0011 $3

%0100 $4

%0101 $5

%0110 $6

%0111 $7

%1000 $8

%1001 $9

%1010 $A

%1011 $B

%1100 $C

%1101 $D

%1110 $E

%1111 $F

To convert the hexadecimal representation of a number into binary, 
substitute the corresponding 4 bits for each hexadecimal digit. For exam-
ple, to convert $ABCD into the binary form %1010_1011_1100_1101, convert each 
hexadecimal digit according to the values in Table 2-1:

A B C D Hexadecimal
1010 1011 1100 1101 Binary

Converting the binary representation of a number into hexadecimal 
is almost as easy. First, pad the binary number with 0s to make sure it is a 
multiple of 4 bits long. For example, given the binary number 1011001010, 
add two 0 bits to the left of the number to make it 12 bits without changing 
its value: 001011001010. Next, separate the binary value into groups of 4 
bits: 0010_1100_1010. Finally, look up these binary values in Table 2-1 and 
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substitute the appropriate hexadecimal digits: $2CA. As you can see, this 
is much simpler than converting between decimal and binary or between 
decimal and hexadecimal.

2.2.5 The Octal Numbering System
Octal (base-8) representation was common in early computer systems, 
so you might still see it in use now and then. Octal is great for 12-bit and 
36-bit computer systems (or any other size that is a multiple of 3), but not 
particularly for computer systems whose bit size is a power of 2 (8-, 16-, 32-, 
and 64-bit computer systems). Nevertheless, some programming languages 
allow you to specify numeric values in octal notation, and you can still find 
some older Unix applications that use it.

2.2.5.1 Representing Octal Values in Programming Languages

The C programming language (and derivatives like C++ and Java), Visual 
Basic, and MASM support octal representation. You should be aware of the 
notation they use for octal numbers in case you come across it in programs 
written in these languages.

•	 In C, you specify the octal base by prefixing a numeric string with a 0. 
For example, 0123 is equivalent to the decimal value 8310 and definitely 
not equivalent to the decimal value 12310.

•	 MASM uses a Q or q suffix. (Microsoft/Intel probably chose Q because it 
looks like the letter O but isn’t likely to be confused with a zero.)

•	 Swift uses a 0o prefix. For example, 0o14 represents the decimal value 1210.

•	 Visual Basic uses the prefix &O (that’s the letter O, not a zero). For exam-
ple, you’d use &O123 to represent the decimal value 8310.

2.2.5.2 Converting Between Octal and Binary Representation

Converting between binary and octal is similar to converting between binary 
and hexadecimal, except that you work in groups of 3 bits rather than 4. See 
Table 2-2 for the list of binary and octal equivalent representations.

Table 2-2: Binary/Octal Conversion Chart

Binary Octal

%000 0

%001 1

%010 2

%011 3

%100 4

%101 5

%110 6

%111 7
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To convert octal into binary, replace each octal digit in the number 
with the corresponding 3 bits from Table 2-2. For example, when you con-
vert 123q into a binary value, the final result is %0_0101_0011:

1 2 3

001 010 011

To convert a binary number into octal, you break up the binary string 
into groups of 3 bits (padding with 0s, as necessary) and then replace each 
triad with the corresponding octal digit from Table 2-2.

To convert an octal value to hexadecimal notation, convert the octal 
number to binary and then convert the binary value to hexadecimal. 

2.3 Numeric/String Conversions
In this section, we’ll explore conversions from string to numeric form and 
vice versa. Because most programming languages (or their libraries) per-
form these conversions automatically, beginning programmers are often 
unaware that they’re even taking place. For example, consider how easy it is 
to convert a string to numeric form in various languages:

cin >> i;                      // C++
readln( i );                   // Pascal
let j = Int(readLine() ?? "")! // Swift
input i                        // BASIC
stdin.get(i);                  // HLA

In each of these statements, the variable i can hold some integer num-
ber. The input from the user’s console, however, is a string of characters. 
The programming language’s runtime library is responsible for converting 
that string of characters to the internal binary form the CPU requires. Note 
that Swift only allows you to read a string from the standard input; you must 
explicitly convert that string to an integer using the Int() constructor/type 
conversion function.

Unfortunately, if you have no idea of the cost of these statements, you 
won’t realize how they can impact your program when performance is criti-
cal. It’s important to understand the underlying work involved in the con-
version algorithms so you won’t frivolously use statements like these.

N O T E  For simplicity’s sake, we’ll discuss unsigned integer values and ignore the possibil-
ity of illegal characters and numeric overflow. Therefore, the following algorithms 
slightly understate the actual work involved.

Use this algorithm to convert a string of decimal digits to an integer value:

1. Initialize a variable with 0; this will hold the final value.

2. If there are no more digits in the string, then the algorithm is com-
plete, and the variable holds the numeric value.
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3. Fetch the next digit (moving from left to right) from the string and 
convert it from ASCII to an integer.

4. Multiply the variable by 10, and then add in the digit fetched in step 3.

5. Return to step 2 and repeat.

Converting an integer value to a string of characters takes even 
more effort:

1. Initialize a string to the empty string.

2. If the integer value is 0, output a 0, and the algorithm is complete.

3. Divide the current integer value by 10, computing the remainder 
and quotient.

4. Convert the remainder (always in the range 0..92) to a character, and 
insert the character at the beginning of the string.

5. If the quotient is not 0, make it the new value and repeat steps 3–5.

6. Output the characters in the string.

The particulars of these algorithms are not important. What is impor-
tant is that these steps execute once for each output character and division 
is very slow. So, a simple statement like one of the following can hide a fair 
amount of work from the programmer:

printf( "%d", i );    // C
cout << i;            // C++
print i               // BASIC
write( i );           // Pascal
print( i)             // Swift
stdout.put( i );      // HLA

To write great code, you don’t need to avoid using numeric/string con-
versions altogether; however, a great programmer will take care to use them 
only as necessary.

Remember that these algorithms are valid only for unsigned integers. 
Signed integers require a little more effort to process (though the extra 
work is almost negligible). Floating-point values, however, are far more dif-
ficult to convert between string and numeric form, so keep that in mind 
when writing code that uses floating-point arithmetic.

2.4 Internal Numeric Representation
Most modern computer systems use an internal binary format to represent 
values and other objects. However, most systems can only efficiently rep-
resent binary values of a given size. In order to write great code, you need 
to make sure that your programs use data objects that the machine can 

2. The “..” notation, taken from Pascal and other programming languages, denotes a range of 
values. Thus, “0..9” denotes all integer values between 0 and 9.
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represent efficiently. This section will describe how computers physically 
represent values so you can design your programs accordingly.

2.4.1 Bits
The smallest unit of data on a binary computer is a single bit. Because a bit 
can represent only two different values (typically 0 or 1), you might assume 
that you can’t use it for much. But in fact, there’s an infinite number of 
two-item combinations you can represent with a single bit. Here are some 
examples (with arbitrary binary encodings I’ve created):

•	 Zero (0) or one (1)

•	 False (0) or true (1)

•	 Off (0) or on (1)

•	 Male (0) or female (1)

•	 Wrong (0) or right (1) 

You’re not limited to representing binary data types, either (that is, 
those objects that have only two distinct values). You could also use a single 
bit to represent any two distinct items:

•	 The numbers 723 (0) and 1,245 (1)

•	 The colors red (0) and blue (1) 

You could even represent two unrelated objects with a single bit. For 
example, you could use the bit value 0 to represent the color red and the bit 
value 1 to represent the number 3,256. You can represent any two different 
values with a single bit—but only two different values. Therefore, individual 
bits aren’t sufficient for most computational needs. To overcome the limita-
tions of a single bit, we create bit strings from a sequence of multiple bits.

2.4.2 Bit Strings
By combining bits into a sequence, we can form binary representations that 
are equivalent to other representations of numbers, like hexadecimal and 
octal. Most computer systems don’t let you combine an arbitrary number of 
bits, so you have to work with bit strings of certain fixed lengths.

A nibble is a collection of 4 bits. Most computer systems don’t provide 
efficient access to nibbles in memory. Notably, it takes exactly 1 nibble to 
represent a single hexadecimal digit.

A byte is 8 bits and is the smallest addressable data item on many CPUs; 
that is, the CPU can efficiently retrieve data in groups of 8 bits from mem-
ory. For this reason, the smallest data type that many languages support 
consumes 1 byte of memory (regardless of the actual number of bits the 
data type requires).
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Because the byte is the smallest unit of storage on most machines, and 
many languages use bytes to represent objects that require fewer than 8 bits, 
we need some way of denoting individual bits within a byte. To describe the 
bits within a byte, we’ll use bit numbers. As Figure 2-3 shows, bit 0 is the low-
order (LO), or least significant, bit, and bit 7 is the high-order (HO), or most signifi-
cant, bit of the byte. We’ll refer to all other bits by their number. 

7 6 5 4 3 2 1 0

Figure 2-3: Bit numbering in a byte

A word is defined differently depending on the CPU: it may be a 16-bit, 
32-bit, or 64-bit object. This book adopts the 80x86 terminology and 
defines a word as a collection of 16 bits. As with bytes, we’ll use bit numbers 
for a word, starting with bit number 0 for the LO bit and working our way 
up to bit 15, the HO bit (see Figure 2-4).

15 14 13 12 11 10 7 6 5 4 3 2 1 09 8

Figure 2-4: Bit numbers in a word

Notice that a word contains exactly 2 bytes. Bits 0 through 7 form the 
LO byte, and bits 8 through 15 form the HO byte (see Figure 2-5).

15 14 13 12 11 10 7 6 5 4 3 2 1 09 8

HO byte LO byte

Figure 2-5: The 2 bytes in a word

A double word (or dword) is exactly what its name implies—a pair of words. 
Therefore, a double-word quantity is 32 bits long, as shown in Figure 2-6.

31 23 15 7 0

Figure 2-6: Bit layout in a double word
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Figure 2-7 shows that a double word comprises 2 words or 4 bytes.

31 23 15 7 0

Byte #1Byte #2HO byte LO byte

31 23

HO word LO word

15 7 0

Figure 2-7: Bytes and words in a double word

As noted, most CPUs efficiently handle objects up to a certain size (typi-
cally 32 or 64 bits on contemporary systems). That doesn’t mean you can’t 
work with larger objects, simply that it’s less efficient to do so. You typically 
won’t see programs handling numeric objects much larger than about 128 
or 256 bits. Some programming languages make 64-bit integers available, 
and most languages support 64-bit floating-point values, so for these data 
types we’ll use the term quad word. Finally, we’ll use long word to describe 
128-bit values; although few languages today support them,3 this gives us 
some room to grow.

We can break down quad words into 2 double words, 4 words, 8 bytes, 
or 16 nibbles. Likewise, we can break down long words into 2 quad words, 4 
double words, 8 words, or 16 bytes. 

Intel 80x86 platforms also support an 80-bit type that Intel calls a tbyte 
(short for “ten byte”) object. The 80x86 CPU family uses tbyte variables 
to hold extended precision floating-point values and certain binary-coded 
decimal (BCD) values.

In general, with an n-bit string you can represent up to 2n different val-
ues. Table 2-3 shows the number of possible objects you can represent with 
nibbles, bytes, words, double words, quad words, and long words.

Table 2-3: Number of Values Representable with Bit Strings

Size of bit string (in bits) Number of possible combinations (2n)

4 16

8 256

16 65,536

32 4,294,967,296

64 18,446,744,073,709,551,616

128 340,282,366,920,938,463,463,374,607,431,768,211,456

3. HLA supports 128-bit values.
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2.5 Signed and Unsigned Numbers
The binary number 0…000004 represents 0; 0…00001 represents 1; 
0…00010 represents 2; and so on toward infinity. But what about negative 
numbers? To represent signed values, most computer systems use the two’s 
complement numbering system. The representation of signed numbers places 
some fundamental restrictions on them, so it’s important that you under-
stand how signed and unsigned numbers are represented differently in a 
computer system in order to use them efficiently.

With n bits, we can represent only 2n different objects. Because nega-
tive values are objects in their own right, we’ll have to divide these 2n com-
binations between negative and non-negative values. So, for example, a 
byte can represent the negative values -128 through -1 and the non-negative 
values 0 to 127. With a 16-bit word, we can represent signed values in the 
range -32,768 to +32,767. With a 32-bit double word, we can represent values 
in the range -2,147,483,648 to +2,147,483,647. In general, with n bits we can 
represent the signed values in the range -2n -1 to +2n -1 − 1. 

The two’s complement system uses the HO bit as a sign bit. If the HO bit 
is 0, the number is non-negative and has the usual binary encoding; if the 
HO bit is 1, the number is negative and uses the two’s complement encod-
ing. Here are some examples using 16-bit numbers:

•	 $8000 (%1000_0000_0000_0000) is negative because the HO bit is 1.

•	 $100 (%0000_0001_0000_0000) is non-negative because the HO bit is 0.

•	 $7FFF (%0111_1111_1111_1111) is non-negative.

•	 $FFFF (%1111_1111_1111_1111) is negative.

•	 $FFF (%0000_1111_1111_1111) is non-negative.

To negate a number, you can use the two’s complement operation 
as follows:

1. Invert all the bits in the number; that is, change all the 0s to 1s and 
vice versa.

2. Add 1 to the inverted result (ignoring any overflow).
If the result is negative (has its HO bit set), then this is the two’s 

complement form of the non-negative value.
For example, these are the steps to compute the 8-bit equivalent of 

the decimal value −5:

1. %0000_0101 5 (in binary).

2. %1111_1010 Invert all the bits.

3. %1111_1011 Add 1 to obtain −5 (in two’s complement form).

4. The ellipses (. . .) have the standard mathematical meaning: repeat a string of zeros an 
indefinite number of times.
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If we take −5 and negate it, the result is 5 (%0000_0101), just as we expect:

1. %1111_1011 Two’s complement for −5.

2. %0000_0100 Invert all the bits.

3. %0000_0101 Add 1 to obtain 5 (in binary).

Let’s look at some 16-bit examples and their negations. 
First, negate 32,767 ($7FFF):

1. %0111_1111_1111_1111 +32,767, the largest 16-bit positive number.

2. %1000_0000_0000_0000 Invert all the bits (8000h).

3. %1000_0000_0000_0001 Add 1 (8001h, or -32,767).

Now negate 16,384 ($4000):

1. %0100_0000_0000_0000 16,384.

2. %1011_1111_1111_1111 Invert all the bits ($BFFF).

3. %1100_0000_0000_0000 Add 1 ($C000 or -16,384).

And now negate -32,768 ($8000):

1. %1000_0000_0000_0000 -32,768, the smallest 16-bit negative number.

2. %0111_1111_1111_1111 Invert all the bits ($7FFF).

3. %1000_0000_0000_0000 Add 1 ($8000 or -32768).

$8000 inverted becomes $7FFF, and after adding 1 we obtain $8000! 
Wait, what’s going on here: −(-32,768) is -32,768? Of course not. However, 
the 16bit two’s complement numbering system cannot represent the value 
+32,768. In general, you cannot negate the smallest negative value in the 
two’s complement numbering system. 

2.6 Useful Properties of Binary Numbers
Here are some properties of binary values that you might find useful in 
your programs:

•	 If bit position 0 of a binary (integer) value contains 1, the number is an 
odd number; if this bit contains 0, then the number is even.

•	 If the LO n bits of a binary number all contain 0, then the number is 
evenly divisible by 2n.

•	 If a binary value contains a 1 in bit position n, and 0s everywhere else, 
then that number is equal to 2n.

•	 If a binary value contains all 1s from bit position 0 up to (but not 
including) bit position n, and all other bits are 0, then that value is 
equal to 2n − 1.
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•	 Shifting all the bits in a number to the left by one position multiplies 
the binary value by 2.

•	 Shifting all the bits of an unsigned binary number to the right by one 
position effectively divides that number by 2 (this does not apply to 
signed integer values). Odd numbers are rounded down.

•	 Multiplying two n-bit binary values together may require as many as 2 × 
n bits to hold the result.

•	 Adding or subtracting two n-bit binary values never requires more than 
n + 1 bits to hold the result.

•	 Inverting all the bits in a binary number (that is, changing all the 0s to 
1s and vice versa) is the same thing as negating (changing the sign) of 
the value and then subtracting 1 from the result.

•	 Incrementing (adding 1 to) the largest unsigned binary value for a given 
number of bits always produces a value of 0.

•	 Decrementing (subtracting 1 from) 0 always produces the largest 
unsigned binary value for a given number of bits.

•	 An n-bit value provides 2n unique combinations of those bits.

•	 The value 2n-1 contains n bits, each containing the value 1.

It’s a good idea to memorize all the powers of 2 from 20 through 216 
(see Table 2-4), as these values come up in programs all the time.

Table 2-4: Powers of 2 

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1,024

11 2,048

12 4,096

13 8,192

14 16,384

15 32,768

16 65,536
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2.7 Sign Extension, Zero Extension, and Contraction
With the two’s complement system, a single negative value is represented 
differently depending on the size of the representation. An 8-bit signed 
value must be converted for use in an expression involving a 16bit number. 
This conversion and its converse—converting a 16-bit value to 8 bits—are 
the sign extension and contraction operations, respectively.

Consider the value −64. The 8-bit two’s complement value for this num-
ber is $C0. The 16-bit equivalent is $FFC0. Clearly, these are not the same bit 
pattern. Now consider the value +64. The 8- and 16-bit versions of this value 
are $40 and $0040, respectively. We extend the size of negative values differ-
ently than we extend the size of non-negative values. 

To sign-extend a value, copy the sign bit into the additional HO bits in 
the new format. For example, to sign-extend an 8-bit number to a 16-bit 
number, copy bit 7 of the 8-bit number into bits 8 through 15 of the 16-bit 
number. To sign-extend a 16-bit number to a double word, copy bit 15 into 
bits 16 through 31 of the double word. 

When adding a byte quantity to a word quantity, you need to sign 
extend the byte to 16 bits before adding the two numbers. Other operations 
may require a sign extension to 32 bits.

Table 2-5 provides several examples of sign extension.

Table 2-5: Sign Extension Examples

8 bits 16 bits 32 bits Binary (two’s complement)

$80 $FF80 $FFFF_FF80 %1111_1111_1111_1111_1111_1111_1000_0000

$28 $0028 $0000_0028 %0000_0000_0000_0000_0000_0000_0010_1000

$9A $FF9A $FFFF_FF9A %1111_1111_1111_1111_1111_1111_1001_1010

$7F $007F $0000_007F %0000_0000_0000_0000_0000_0000_0111_1111

n/a $1020 $0000_1020 %0000_0000_0000_0000_0001_0000_0010_0000

n/a $8086 $FFFF_8086 %1111_1111_1111_1111_1000_0000_1000_0110

Zero extension converts small unsigned values to larger unsigned values. 
Zero extension is very easy—just store 0s in the HO byte(s) of the larger 
operand. For example, to zero-extend the 8-bit value $82 to 16 bits, you 
insert a 0 for the HO byte, yielding $0082. 

Further examples are listed in Table 2-6.

Table 2-6: Zero Extension Examples

8 bits 16 bits 32 bits Binary

$80 $0080 $0000_0080 %0000_0000_0000_0000_0000_0000_1000_0000

$28 $0028 $0000_0028 %0000_0000_0000_0000_0000_0000_0010_1000

$9A $009A $0000_009A %0000_0000_0000_0000_0000_0000_1001_1010

$7F $007F $0000_007F %0000_0000_0000_0000_0000_0000_0111_1111

n/a $1020 $0000_1020 %0000_0000_0000_0000_0001_0000_0010_0000

n/a $8086 $0000_8086 %0000_0000_0000_0000_1000_0000_1000_0110
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Many high-level language compilers automatically handle sign and zero 
extension. The following examples in C demonstrate how this works:

signed char sbyte;   // Chars in C are byte values.
short int sword;     // Short integers in C are *usually* 16-bit values.
long int sdword;     // Long integers in C are *usually* 32-bit values.
 . . .
sword = sbyte;       // Automatically sign-extends the 8-bit value to 16 bits.
sdword = sbyte;      // Automatically sign-extends the 8-bit value to 32 bits.
sdword = sword;      // Automatically sign-extends the 16-bit value to 32 
bits.

Some languages (such as Ada or Swift) require an explicit cast from a 
smaller size to a larger size. Check the reference manual for your particu-
lar language to see if this is necessary. The advantage of a language that 
requires you to provide an explicit conversion is that the compiler never 
does anything behind your back. If you fail to do the conversion yourself, 
the compiler emits a diagnostic message.

The important thing to realize about sign and zero extension is that 
they aren’t always free. Assigning a smaller integer to a larger integer may 
require more machine instructions (taking longer to execute) than mov-
ing data between two like-sized integer variables. Therefore, you should be 
careful about mixing variables of different sizes within the same arithmetic 
expression or assignment statement.

Sign contraction—converting a value with some number of bits to the 
same value with a fewer number of bits—is a little more troublesome. For 
example, consider the value −448. As a 16-bit hexadecimal number, its rep-
resentation is $FE40. The magnitude of this number is too large to fit into 8 
bits, so you can’t sign-contract it to 8 bits.

To properly sign-contract one value to another, you must look at the 
HO byte(s) that you want to discard. First, the HO bytes must all contain 
either 0 or $FF. Second, the HO bit of your resulting value must match every 
bit you’ve removed from the number. Here are some examples of convert-
ing 16-bit values to 8-bit values (including a couple of failures):

•	 $FF80 (%1111_1111_1000_0000) can be sign-contracted to $80 (%1000_0000).

•	 $0040 (%0000_0000_0100_0000) can be sign-contracted to $40 (%0100_0000).

•	 $FE40 (%1111_1110_0100_0000) cannot be sign-contracted to 8 bits.

•	 $0100 (%0000_0001_0000_0000) cannot be sign-contracted to 8 bits.

Some high-level languages, like C, will simply store the LO portion of 
the expression into a smaller variable and discard the HO component—at 
best, the C compiler may give you a warning about the loss of precision that 
may occur. You can often quiet the compiler, but it still doesn’t check for 
invalid values. Typically, you’d use code like the following to sign-contract a 
value in C:

signed char sbyte;    // Chars in C are byte values.
short int sword;      // Short integers in C are *usually* 16-bit values.
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long int sdword;      // Long integers in C are *usually* 32-bit values.
 . . .
sbyte = (signed char) sword;
sbyte = (signed char) sdword;
sword = (short int) sdword;

The only safe solution in C is to compare the result of the expression to 
an upper- and lower-bound value before attempting to store the value into a 
smaller variable. Here’s the preceding code with these checks in place:

if( sword >= -128 && sword <= 127 )
{
    sbyte = (signed char) sword;
}
else
{
    // Report appropriate error.
}

// Another way, using assertions:

assert( sword >= -128 && sword <= 127 )
sbyte = (signed char) sword;

assert( sdword >= -32768 && sdword <= 32767 )
sword = (short int) sdword;

This code gets pretty ugly. In C/C++, you’d probably want to turn 
this into a macro (#define) or a function so your code would be a bit more 
readable.

Some high-level languages (such as Free Pascal and Delphi) automati-
cally sign-contract values and then check the value to ensure it fits in the 
destination operand.5 Such languages raise some sort of exception (or stop 
the program) if a range violation occurs. To take corrective action, you’ll 
either need to write some exception handling code or use an if statement 
sequence similar to the one in the C example just given.

2.8 Saturation
You can also reduce the size of an integer value through saturation, which is 
useful when you’re willing to live with a possible loss of precision. To con-
vert a value via saturation, you copy the LO bits of the larger object into the 
smaller object. If the larger value is outside the smaller object’s range, then 
you clip the larger value by setting the smaller object to the largest (or small-
est) value within the smaller value’s range.

For example, when converting a 16-bit signed integer to an 8-bit signed 
integer, if the 16-bit value is in the range -128 through +127, you simply copy 

5. Borland’s compilers require the use of a special compiler directive to activate this check. 
By default, the compiler does not do the bounds check.
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the LO byte into the 8bit object. If the 16-bit signed value is greater than 
+127, then you clip the value to +127 and store +127 into the 8-bit object. 
Likewise, if the value is less than -128, you clip the final 8-bit object to -128. 
Saturation works the same way when you clip 32-bit values to smaller values.

If the larger value is outside the range of the smaller value, there will 
be a loss of precision during the conversion. While clipping the value is 
never desirable, sometimes it’s better than raising an exception or oth-
erwise rejecting the calculation. For many applications, such as audio or 
video, the clipped result is still recognizable to the end user, so this is a rea-
sonable conversion scheme.

Many CPUs support saturation arithmetic in their special “multimedia 
extension” instruction sets—for example, the MMX/SSE/AVX instruc-
tion extensions on the Intel 80x86 processor family. Most CPUs’ standard 
instruction sets, as well as most high-level languages, do not provide direct 
support for saturation, but the technique is not difficult. Consider the fol-
lowing Free Pascal/Delphi code, which uses saturation to convert a 32-bit 
integer to a 16-bit integer:

var
    li  :longint;
    si  :smallint;
        . . .
    if( li > 32767 ) then

        si := 32767;

    else if( li < -32768 ) then

        si := -32768;

    else 
        si := li;

2.9 Binary-Coded Decimal Representation
The binary-coded decimal (BCD) format, as its name suggests, encodes 
decimal values using a binary representation. Common general-purpose 
high-level languages (like C/C++, Pascal, and Java) rarely support decimal 
values. However, business-oriented programming languages (like COBOL 
and many database languages) do. So, if you’re writing code that interfaces 
with a database or some language that supports decimal arithmetic, you 
may need to deal with BCD representation.

BCD values consist of a sequence of nibbles, with each nibble represent-
ing a value in the range 0 to 9. (The BCD format uses only 10 of the pos-
sible 16 values represented by a nibble.) With a byte we can represent values 
containing two decimal digits (0..99), as shown in Figure 2-8. With a word, 
we can represent four decimal digits (0..9999). A double word can repre-
sent up to eight decimal digits.
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7 6 5 4 3 2 1 0

HO nibble
(HO digit)

LO nibble
(LO digit)

0..9 0..9

Figure 2-8: BCD data representation in a byte

An 8-bit BCD variable can represent values in the range 0 to 99, while 
that same 8 bits, holding a binary value, could represent values in the range 
0 to 255. Likewise, a 16-bit binary value can represent values in the range 
0 to 65535, while a 16-bit BCD value can represent only about a sixth of 
those values (0..9999). Inefficient storage isn’t the only problem with BCD, 
though—BCD calculations also tend to be slower than binary calculations.

The BCD format does have two saving graces: it’s very easy to convert 
BCD values between the internal numeric representation and their decimal 
string representations, and it’s also very easy to encode multidigit decimal 
values in hardware when using BCD—for example, when using a set of 
dials, with each dial representing a single digit. For these reasons, you’re 
likely to see people using BCD in embedded systems (such as toaster ovens 
and alarm clocks) but rarely in general-purpose computer software.

A few decades ago, people thought that calculations involving BCD 
(or just decimal) arithmetic were more accurate than binary calculations. 
Therefore, they would often perform important calculations, like those 
involving monetary units, using decimal-based arithmetic. Certain calcula-
tions can produce more accurate results in BCD, but for most calculations, 
binary is more accurate. This is why most modern computer programs rep-
resent all values (including decimal values) in a binary form. For example, 
the Intel 80x86 floating-point unit (FPU) supports a pair of instructions for 
loading and storing BCD values. Internally, the FPU converts these BCD 
values to binary. It only uses BCD as an external (to the FPU) data format. 
This approach generally produces more accurate results.

2.10 Fixed-Point Representation
There are two ways computer systems commonly represent numbers with 
fractional components: fixed-point representation and floating-point 
representation. 

Back in the days when CPUs didn’t support floating-point arithmetic 
in hardware, fixed-point arithmetic was very popular with programmers 
writing high-performance software that dealt with fractional values. There’s 
less software overhead needed to support fractional values in a fixed-point 
format than in floating-point. However, CPU manufacturers added FPUs to 
their CPUs to support floating-point in hardware, and today, it’s fairly rare 
to see someone attempt fixed-point arithmetic on a general-purpose CPU. 
It’s usually more cost-effective to use the CPU’s native floating-point format. 
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Although CPU manufacturers have worked hard at optimizing the 
floating-point arithmetic on their systems, in certain circumstances, care-
fully written assembly language programs that use fixed-point calculations 
will run faster than the equivalent floating-point code. Certain 3D gaming 
applications, for example, may produce faster computations using a 16:16 
(16-bit integer, 16-bit fractional) format rather than a 32-bit floatingpoint 
format. Because there are some very good uses for fixed-point arithmetic, 
this section discusses fixed-point representation and fractional values using 
the fixed-point format.

N O T E  Chapter 4 will discuss the floating-point format.

As you’ve seen, positional numbering systems represent fractional 
values (values between 0 and 1) by placing digits to the right of the radix 
point. In the binary numbering system, each bit to the right of the binary 
point represents the value 0 or 1 multiplied by some successive negative 
power of 2. We represent that fractional component of a value using sums 
of binary fractions. For example, the value 5.25 is represented by the binary 
value 101.01. The conversion to decimal yields:

1 × 22 + 1 × 20 + 1 × 2–2 = 4 + 1 + 0.25 = 5.25
When using a fixed-point binary format, you choose a particular bit 

in the binary representation and implicitly place the binary point before 
that bit. You choose the position of the binary point based on the number 
of significant bits you require in the fractional portion of the number. For 
example, if your values’ integer components can range from 0 to 999, you’ll 
need at least 10 bits to the left of the binary point to represent this range of 
values. If you require signed values, you’ll need an extra bit for the sign. In 
a 32-bit fixed-point format, this leaves either 21 or 22 bits for the fractional 
part, depending on whether your value is signed. 

Fixed-point numbers are a small subset of the real numbers. Because 
the number of values between any two integer values is infinite, fixedpoint 
values cannot exactly represent every single one (doing so would require 
an infinite number of bits). With fixed-point representation, we have to 
approximate most of the real numbers. Consider the 8bit fixed-point for-
mat, which uses 6 bits for the integer portion and 2 bits for the fractional 
component. The integer component can represent values in the range 0 
to 63 (or signed values in the range -32 to +31). The fractional component 
can represent only four different values: 0.0, 0.25, 0.5, and 0.75. You cannot 
exactly represent 1.3 with this format; the best you can do is approximate 
it by choosing the value closest to it (1.25). This introduces error. You can 
reduce this error by adding further bits to the right of the binary point 
in your fixed-point format (at the expense of reducing the range of the 
integer component or adding more bits to your fixed-point format). For 
example, if you move to a 16-bit fixed-point format using an 8bit integer 
and an 8-bit fractional component, then you can approximate 1.3 using the 
binary value 1.01001101. The decimal equivalent is as follows:

1 + 0.25 + 0.03125 + 0.15625 + 0.00390625 = 1.30078125
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Adding more bits to the fractional component of your fixed-point num-
ber will give you a more accurate approximation of this value (the error is 
only 0.00078125 using this format, compared to 0.05 in the previous format).

In a fixed-point binary numbering system, there are certain values you 
can never accurately represent regardless of how many bits you add to the 
fractional part of your fixed-point representation (1.3 just happens to be 
such a value). This is probably the main reason why people (mistakenly) 
feel that decimal arithmetic is more accurate than binary arithmetic (par-
ticularly when working with decimal fractions like 0.1, 0.2, 0.3, and so on). 

To contrast the comparative accuracy of the two systems, let’s consider 
a fixed-point decimal system (using BCD representation). If we choose a 
16-bit format with 8 bits for the integer portion and 8 bits for the fractional 
portion, we can represent decimal values in the range 0.0 to 99.99 with two 
decimal digits of precision to the right of the decimal point. We can exactly 
represent values like 1.3 in this BCD notation using a hex value like $0130 
(the implicit decimal point appears between the second and third digits 
in this number). As long as you use only the fractional values 0.00 to 0.99 
in your computations, this BCD representation is more accurate than the 
binary fixed-point representation (using an 8-bit fractional component).

In general, however, the binary format is more accurate. The binary 
format lets you exactly represent 256 different fractional values, whereas 
BCD lets you represent only 100. If you pick an arbitrary fractional value, 
it’s likely the binary fixed-point representation provides a better approxima-
tion than the decimal format (because there are over two and a half times 
as many binary versus decimal fractional values). (You can extend this com-
parison to larger formats: for example, with a 16-bit fractional component, 
the decimal/BCD fixed-point format gives you exactly four digits of preci-
sion; the binary format, on the other hand, offers over six times the resolu-
tion—65,536 rather than 10,000 fractional values.) Decimal fixed-point 
format has the advantage only when you regularly work with the fractional 
values that it can exactly represent. In the United States, monetary compu-
tations commonly produce these fractional values, so programmers figured 
the decimal format is better for monetary computations. However, given the 
accuracy most financial computations require (generally four digits to the 
right of the decimal point is the minimum precision), it’s usually better to 
use a binary format.

If you absolutely, positively need to exactly represent the fractional val-
ues between 0.00 and 0.99 with at least two digits of precision, the binary 
fixed-point format is not a viable solution. Fortunately, you don’t have to use 
a decimal format; as you’ll soon see, there are other binary formats that will 
let you exactly represent these values. 
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2.11 Scaled Numeric Formats
Fortunately, there’s a numeric representation that combines the exact rep-
resentation of certain decimal fractions with the precision of the binary for-
mat. Known as the scaled numeric format, this representation is also efficient 
to use and doesn’t require any special hardware. 

Another advantage of the scaled numeric format is that you can choose 
any base, not just decimal, for your format. For example, if you’re working 
with ternary (base-3) fractions, you can multiply your original input value 
by 3 (or a power of 3) and exactly represent values like 1/3, 2/3, 4/9, 7/27, 
and so on—something you can’t do in either the binary or decimal num-
bering systems.

To represent fractional values, you multiply your original value by some 
value that converts the fractional component to a whole number. For exam-
ple, if you want to maintain two decimal digits of precision to the right of 
the decimal point, multiply your values by 100 upon input. This translates 
values like 1.3 to 130, which we can exactly represent using an integer value. 
Assuming you do this calculation with all your fractional values (and they 
have the same two digits of precision to the right of the decimal point), you 
can manipulate your values using standard integer arithmetic operations. 
For example, if you have the values 1.5 and 1.3, their integer conversion 
produces 150 and 130. If you add these two values, you get 280 (which cor-
responds to 2.8). When you need to output these values, you divide them 
by 100 and emit the quotient as the integer portion of the value and the 
remainder (zero-extended to two digits, if necessary) as the fractional com-
ponent. Other than needing to write specialized input and output routines 
that handle the multiplication and division by 100 (as well as dealing with 
the decimal point), you’ll find that this scaled numeric scheme is almost as 
easy as doing regular integer calculations.

If you scale your values as described here, you’ve limited the maximum 
range of the integer portion of your numbers. For example, if you need two 
decimal digits of precision to the right of your decimal point (meaning you 
multiply the original value by 100), then you may only represent (unsigned) 
values in the range 0 to 42,949,672 rather than the normal range of 0 to 
4,294,967,296.

When you’re doing addition or subtraction with a scaled format, both 
operands must have the same scaling factor. If you’ve multiplied the left 
operand by 100, you must multiply the right operand by 100 as well. For 
example, if you’ve scaled the variable i10 by 10 and you’ve scaled the vari-
able j100 by 100, you need to either multiply i10 by 10 (to scale it by 100) or 
divide j100 by 10 (to scale it down to 10) before attempting to add or sub-
tract these two numbers. This ensures that both operands have the radix 
point in the same position (note that this applies to literal constants as well 
as to variables).
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In multiplication and division operations, the operands do not require 
the same scaling factor prior to the operation. However, once the operation 
is complete, you may need to adjust the result. Suppose you have two values 
you’ve scaled by 100 to produce two digits of precision after the decimal 
point, i = 25 (0.25) and j = 1 (0.01). If you compute k = i * j using stan-
dard integer arithmetic, you’ll get 25 (25 × 1 = 25), which is interpreted 
as 0.25, but the result should be 0.0025. The computation is correct; the 
problem is understanding how the multiplication operator works. We’re 
actually computing:

(0.25 × (100)) × (0.01 × (100))
=

0.25 × 0.01 × (100 × 100) (commutative laws allow this)
=

0.0025 × (10,000)
=

25
The final result actually gets scaled by 10,000 because both i and j have 

been multiplied by 100; when you multiply their values, you wind up with a 
value multiplied by 10,000 (100 × 100) rather than 100. To solve this prob-
lem, you should divide the result by the scaling factor once the computation 
is complete. For example, k = (i * j)/100.

The division operation suffers from a similar problem. Suppose we 
have the values m = 500 (5.0) and n = 250 (2.5) and we want to compute k = 
m/n. We would normally expect to get the result 200 (2.0, which is 5.0/2.5). 
However, here’s what we’re actually computing:

(5 × 100) / (2.5 × 100)
=

500/250
=
2

At first blush this may look correct, but the result is really 0.02 after you 
factor in the scaling operation. The result we need is 200 (2.0). Division by 
the scaling factor eliminates the scaling factor in the final result. Therefore, 
to properly compute the result, we need to compute k = 100 * m/n.

Multiplication and division place a limit on the precision you have avail-
able. If you have to premultiply the dividend by 100, then the dividend must 
be at least 100 times smaller than the largest possible integer value, or an 
overflow will occur (producing an incorrect result). Likewise, when you’re 
multiplying two scaled values, the final result must be 100 times less than 
the maximum integer value, or an overflow will occur. Because of these 
issues, you may need to set aside additional bits or work with small numbers 
when using scaled numeric representation.
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2.12 Rational Representation
One big problem with the fractional representations we’ve seen is that they 
provide a close approximation, but not an exact representation, for all ratio-
nal values.6 For example, in binary or decimal you cannot exactly represent 
the value 1/3 . You could switch to a ternary (base-3) numbering system and 
exactly represent 1/3 , but then you wouldn’t be able to exactly represent 
fractional values like 1/2 or 1/10 . We need a numbering system that can rep-
resent any rational fractional value.

Rational representation uses pairs of integers to represent fractional 
values. One integer represents the numerator (n) of a fraction, and the 
other represents the denominator (d). The actual value is equal to n/d. 
As long as n and d are “relatively prime” (that is, not both evenly divisible by 
the same value), this scheme provides a good representation for fractional 
values within the bounds of the integer representation you’re using for n 
and d. Arithmetic is quite easy; you use the same algorithms to add, sub-
tract, multiply, and divide fractional values that you learned in grade school 
when dealing with fractions. However, certain operations may produce 
really large numerators or denominators (to the point where you get inte-
ger overflow in these values). Other than this problem, you can represent a 
wide range of fractional values using this scheme.

2.13 For More Information
Knuth, Donald E. The Art of Computer Programming, Volume 2: Seminumerical 

Algorithms. 3rd ed. Boston: Addison-Wesley, 1998.

6. It isn’t possible to provide an exact computer representation of an irrational number, so we 
won’t even try.
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