
6
program flow

Program flow is about controlling the order in which your
programming blocks are run. Typically, the blocks run from
left to right, but you can control the flow of the program by
making blocks wait, repeat, or choose an action based on some
condition. The three main blocks used for program flow are the
Wait, Switch, and Loop blocks.

You’ve already seen how the Wait block works. In this
chapter, I’ll cover the Switch and Loop blocks in depth. The
Loop Interrupt block is also used to control Loop blocks, so
I’ll explain that as well.

NOTE The Switch and Loop blocks also have some features
that are used exclusively with data wires, which will be cov-
ered in Chapters 9 and 10.

the switch
block

The Switch block (shown in Figure 6-1) lets your program
make a decision about which blocks to run. This type of struc-
ture is called a conditional because the program flow changes
based on whether a condition is met. The Switch block checks
the condition in order to choose from two or more groups of
blocks; these are called cases. This gives your program the
ability to make a decision and react to data from the robot’s
sensors. For example, the RedOrBlue program on page 74
uses the reading from the Color Sensor to decide which Sound
block to run.

Figure 6-1: The Switch block

setting the condition

To set the condition on a Switch block, first select a sensor and
mode from the Mode Selector list. Then enter the Threshold
value and any additional parameters, such as the sensor port.

Think of setting the mode as asking a question. The block
shown in Figure 6-1 asks the question, “Is the Touch Sensor
pressed?” This is a yes-or-no question, so the Switch block can
have only two cases: the true case and the false case.

Other questions allow for more than two answers. For
example, the question “What color does the Color Sensor
detect?” has eight possible answers because the Color Sensor
can detect eight values (seven colors and the No Color value).
For this question, the Switch block can have up to eight cases.

70 ChapTer 6

the
LineFollower
program

The LineFollower program is a simple line follower, where the
robot uses a Switch block to decide the direction to go in. The
TriBot uses the Color Sensor in Reflected Light Intensity mode
to follow the edge of a line by adjusting the steering based on
the Light Sensor reading.

For this program, you need to remove the Touch Sensor
bumper from the front of the TriBot and replace it with the
Color Sensor. The Color Sensor should be mounted so that it
points downward, as shown in Figure 6-3.

Figure 6-3: Color Sensor position for following a line

To test this program, you need a dark line to follow. You
can use black electrical tape or a black marker to mark an oval
on a white poster board (see Figure 6-4). Your line should be
at least an inch (3 cm) wide and needs to be much darker than
the background.

Figure 6-4: a test line made from electrical tape and poster board

NOTE This program works best with smooth turns; sharp
corners may cause problems. The final version of the pro-
gram, presented in Chapter 19, is better at navigating
corners.

the basic program

The program makes the robot follow the line by constantly
adjusting the direction in which the robot steers in order to
keep the Color Sensor over the edge of the line (see Figure 6-5).
With the Color Sensor in Reflected Light Intensity mode, the

REsiziNg a BLOck

The Switch and Loop blocks automatically resize when
you drag blocks into them. You may want to adjust the
size of a Switch or Loop block yourself to shrink a block
after removing some of the blocks inside, to see more
tabs of a Switch block using Tabbed View, or to make
room for comments.

When you click a Loop block or a Switch block case,
a set of resizing handles appears, as shown in Figure 6-2.
Click and drag a handle to change the size of the block.

Figure 6-2: resizing handles

 program Flow 71

sensor reading tells you how much light is reflected from a
small circular area under the sensor. When the sensor is over
the white background, it will give a high reading because a large
quantity of light is reflected. When the sensor is completely over
the dark line, it will give a low reading because a small amount
of light is reflected. Between these two extremes, the reading
varies based on how much of the line is under the sensor. As the
robot moves forward, it will use the Color Sensor reading to tell
where it is relative to the edge of the line. If the robot is too far
over the line, it will steer to the left, moving it back towards the
edge. If the robot moves away from the line, it will steer to the
right to get back to the edge.

Figure 6-5: The Color Sensor over the edge of the line

The program uses a Switch block to choose between two
Move Steering blocks, one of which steers to the left and the
other to the right. Figure 6-6 shows the completed program.
The entire program is within a Loop block, which keeps the
program running until you stop it. The Switch block reads the
Color Sensor and decides which Move Steering block to run.
The Move Steering block on the upper section (the true case)
steers the TriBot to the left, and the one on the lower section
(the false case) steers it to the right.

Now let’s create the program:

1. Create a new project named Chapter6.

2. Create a new program named LineFollower.

3. Add the Loop block.

4. Drag a Switch block into the Loop block (the Loop block
will grow to fit the Switch block).

5. Add a Move Steering block to each case of the Switch block.

6. Select the Switch block, and set the mode to Color
Sensor - Compare - Reflected Light Intensity.

Now you just need to configure the settings for each block.
Let’s discuss how to decide on a value for each setting.

selecting the color sensor
threshold

How should we determine the Threshold value to use for the
Switch block? To make the TriBot follow the edge of the line,
you’ll need to find the value that the Color Sensor reads when
it’s on the edge of the line. Figure 6-7 shows the Color Sensor
readings I get when I place the TriBot at five positions, moving
from off the line to over the line. A simple but reliable approach
to get a reasonable Threshold value is to take the average of
the high (completely off the line) and low (completely over the
line) values. Using the values from Figure 6-6 results in a
Threshold value of (92 + 13) / 2, which I’ll round down to 52
and use that as the Switch block’s Threshold value. Note that
this is close to the value I got when I placed the TriBot over edge
of the line. Your value may be a little different depending on
the sensor, the test pad, and the lighting in the room.

7. Set the Switch block’s Threshold parameter. The block
should now look like this:

Figure 6-6: The LineFollower program

72 ChapTer 6

configuring the move blocks

The two Move Steering blocks have similar settings, except
that they steer in opposite directions. The speed of the motors
and the steering setting significantly affect how well the TriBot
follows the line. If the Steering value is too low, the TriBot
won’t turn quickly enough to follow a curve in the line. If the
Steering value is too high, the TriBot will have a lot of side-
to-side motion as it constantly goes from one extreme to the
other. Moving too fast makes it harder for the robot to react to
changes in the line’s direction. Start with a Steering para-
meter of positive and negative 30 (30 and -30) and a Power
parameter of 25:

8. Select the Move Steering block on the upper Sequence Beam.

9. Set the mode to On.

10. Set the Power parameter to 25 and the Steering param-
eter to -30. The block should look like this:

11. Select the Move Steering block on the lower Sequence
Beam, and set the mode to On.

12. Set the Power parameter to 25 and the Steering para-
meter to 30. The block should look like this:

testing the program

Now download and run the program to see how well it works.
You might need to adjust how fast the TriBot moves and how
sharply it turns. If you do, make sure that you make the same
changes to both Move Steering blocks. When it’s working, see
how much you can increase the speed and still have the robot
follow the line reliably.

more than two choices

The first version of the LineFollower program makes the TriBot
wiggle left and right while following a straight line, because the
TriBot is constantly adjusting the steering. You can make the
motion smoother with three Move blocks: one to steer left, one
to go straight, and one to steer right.

In Color Sensor - Compare - Reflected Light Intensity
mode, the Switch block can only choose between two sets of
blocks based on the reading from the Color Sensor. To choose
between three options, you’ll need to use two Switch blocks.
The first Switch block decides if the robot should turn to the
left, and the second decides whether to go straight or turn to
the right. This structure is used often in EV3 programming
(and programming in general) to make sophisticated decisions.

Start by making the following changes to the Line Follower
program:

13. Place a Switch block in the lower section of the existing
Switch block, to the right of the Move Steering block.

14. Set the new Switch block’s mode to Color Sensor -
Compare - Reflected Light Intensity.

15. Drag the existing Move Steering block (the one that turns
to the right) onto the lower section of the new Switch
block.

Slightly over
the line
Reading: 74

Completely off
the line
Reading:92

Over the edge
of the line
Reading: 48

Mostly over
the line
Reading: 28

Completely over
the line
Reading: 13 Figure 6-7: Color Sensor readings

at different positions

 program Flow 73

16. Place a new Move Steering block on the upper section of
the new Switch block.

17. Set the mode to On and the Power parameter to 25.

The Switch block should now look like Figure 6-8.

Figure 6-8: Setting the Threshold values for the new blocks

You need to set the Threshold values for the two Switch
blocks so that the TriBot will go straight when it’s on the edge
of the line and turn when it moves away from the edge (by
going either too far over the line, or too far away from the line).

Originally, I had a single Threshold value set at 52, which
is in the middle of the two extremes, 13 and 92. To get two
Threshold values, we can take the values halfway between this
middle value and the two extremes. This gives me 32 and 72.
Looking back at Figure 6-6, these values make sense because
they are close to the readings I got with the sensor mostly on
the line and mostly off the line. I’ll set the trigger values so
that the robot drives straight when the reading is between
32 and 72, and turn left or right when the reading is outside
that range. Table 6-1 shows how the program should behave
based on the Color Sensor reading. Be sure to calculate your
own values, as they will vary depending on the lighting and the
materials you used to mark the line.

table 6-1: color sensor ranges and program
behavior

color sensor Reading Program Behavior

0–31 Turn left

32–72 Go straight

73–100 Turn right

Follow these steps to complete the program:

18. Select the outer Switch block, and set the Threshold value
to the lower limit of the range that should make the robot
drive straight (which is 32, using my values).

19. Select the inner Switch block, and set the Threshold value
to the lower limit of the range that should make the robot
turn right (which is 73, using my values).

The program should look like Figure 6-9.

Figure 6-9: Setting the Threshold values

74 ChapTer 6

NOTE In this program, each Switch block reads the Color
Sensor value to make its decision. This means that the
sensor is read twice and the two values may not be exactly
the same. But this shouldn’t present a problem because the
sensor value won’t change much in the time it takes the
EV3 to run the two Switch blocks.

testing the program

Now when you run the program, you should notice that the
robot’s motion is much smoother as it follows a straight line.
Experiment with different Threshold values and Power and
Steering parameters to see how fast you can make the TriBot
move without veering off the line and getting lost.

using tabbed view

The LineFollower program uses nested Switch blocks, where
one Switch block is placed within the other. Nested Switch
blocks tend to take up a lot of room on the screen, which can
make it difficult to work with the rest of the program. To shrink
the size of the Switch blocks, switch to Tabbed View (click the
Flat/Tabbed Selector button). This way, the program takes up
much less space on the screen, as you can see in Figure 6-10.

NOTE When using a Switch block in Tabbed View, I recom-
mend putting all comments above the outermost Switch
block. Because you only see one tab at a time, comments
inside the Switch block might get hidden. Figure 6-10 shows
a comment for the code from our line-following program.

the RedOrBlue
program

In this section, we’ll create the RedOrBlue program, which will
identify red and blue objects. We’ll use the IsItBlue program
from Chapter 5 as a starting point (Figure 6-11) because it
already identifies blue objects. We’ll begin by changing the
program to recognize red objects, and then we’ll update it to
do something reasonable if the object is neither red nor blue.

The IsItBlue program is saved in the Chapter5 project, so
the first step is to copy the program to the Chapter6 project
and rename it.

chaLLENgE 6-1

The first version of the lineFollower program chooses
one of two actions each time it loops: turn left or turn
right. The second version made the robot drive more
smoothly by adding a third option: going straight.
Improve the program again by adding two more cases
so that the five options are: turn sharply left, turn
gently left, go straight, turn gently right, and turn
sharply right. You can do this by replacing the Move
Steering blocks that turn left and right with Switch
blocks that decide to turn sharply or gently based on
the reading from the Color Sensor.

Flat/Tabbed View
Selector button

Figure 6-10: The Switch blocks as seen in Tabbed View

 program Flow 75

1. Open the Chapter6 project if it’s not already open.

2. Open the Chapter5 project.

3. Open the Project Properties page for the Chapter5 project
by clicking the small wrench icon at the left side of the
program tabs.

4. Select RedOrBlue in the list of programs.

5. Click the Copy button at the bottom of the window.

6. Select the Chapter6 project.

7. Open the Project Properties page for the Chapter6 project.

8. Click the Paste button. The IsItBlue program will be added
to the project.

9. Open the IsItBlue program and rename it to RedOrBlue.

10. Close the Chapter5 project.

identifying red objects

The lower case of the Switch block already matches blue
objects, so we’ll use the upper case to match red objects.

1. Click the black box at the top of the Switch block and
choose Red, as shown in Figure 6-12.

The yes-or-no response is reasonable for the IsItBlue
program but isn’t quite right for a program that identifies more
colors. Change the Sound blocks so that the program says
“Red” for red objects and “Blue” for blue objects.

2. Select the Sound block on the upper case and change the
sound file to Red.

3. Select the Sound block on the lower case and change the
sound file to Blue.

The program should now look like Figure 6-13. When you
run the program, it should correctly identify red or blue objects.

adding a new case

So far, this program only really identifies blue objects, because
it will declare any nonblue object to be red (because red is
marked as the default case). In this section, you’ll modify the
program to correctly identify red objects and say “Uh-oh” when
it can’t determine an object’s color. The Switch block currently
has two cases: one for red objects and one for blue objects. The
Add Case button, highlighted in Figure 6-14, will add a new
case to the Switch block. If you add a case and then later want
to remove it, click the button with the small x on the right side
of the tab at the top of the case.

NOTE The Add Case button only appears on the Switch block
in modes where there are more than two possible cases.

Figure 6-11: The starting point for the RedOrBlue program Figure 6-12: Selecting red for the upper case

76 ChapTer 6

Now, back to our program:

4. Click the Add Case button. The Switch block should look
like Figure 6-14.

5. Click the red question mark on the tab at the top of the
new case and a menu appears. Select the No Color option.

6. Add a Sound block to the No Color case.

7. Click the Sound File box and select the Uh-oh file. You’ll
find it under the Expressions group. The program should
now look like Figure 6-15.

the default case

Right now, the red case is the default case in our program. This
means that when none of the cases are met, the program will
run the blocks for the red case, and the program will say “Red”
when the Color Sensor reads anything other than red, blue, or
No Color (for example, yellow or green). It makes more sense to
set the No Color case as the default. This way, the program will
say “Uh-oh” whenever it doesn’t detect red or blue.

8. Click the Default Case button on the No Color case.

Figure 6-16 shows the final configuration of the Switch block.

the loop
block

The Loop block lets you repeat a group of blocks over and
over. The blocks inside a Loop block are called the loop body.
You set a condition that controls how often the loop body is
repeated and determines when the program moves on to the
block that appears after the Loop block.

The modes for the Loop block, shown in Figure 6-17,
include the same sensor modes as the Switch block, plus four
additional modes:

Figure 6-13: Identifying red or blue objects Figure 6-14: adding a new case Figure 6-15: The No Color case Figure 6-16: Setting the default to No Color Figure 6-17: Selecting the loop block mode

chaLLENgE 6-2

Extend the redorBlue program to recognize all seven
colors that the Color Sensor can detect.

 program Flow 77

Unlimited The Loop keeps repeating until the program
ends or the loop is exited using the Loop Interrupt block
(discussed below).

Count The Loop repeats for the specified number of
times.

Logic A value passed into the Loop using a data wire
determines whether the Loop should exit. (Chapter 10
discusses using a Loop block with a data wire.)

Time The Loop continues for the specified number of
seconds.

When a Loop block is in a sensor mode, the program
checks the sensor measurement after the loop body runs.
This means that the loop body is always run at least once. The
program then decides whether to continue or leave the loop
based on that sensor value. It doesn’t matter what value the
sensor reads while the loop body is running; only the sensor
value measured at the end of the loop affects the program. If
you’re not careful, this can cause your program to fail. Because
the Color Sensor is only checked at the end of the loop, it’s very
likely that the robot will move past the line without detecting it
while the Sound block or Wait block is running. As an example,
Figure 6-18 shows a flawed version of the LineFinder program
that will often fail to find the line.

Figure 6-18: a broken

LineFinder program

Now, back to our program:

4. Click the Add Case button. The Switch block should look
like Figure 6-14.

5. Click the red question mark on the tab at the top of the
new case and a menu appears. Select the No Color option.

6. Add a Sound block to the No Color case.

7. Click the Sound File box and select the Uh-oh file. You’ll
find it under the Expressions group. The program should
now look like Figure 6-15.

the default case

Right now, the red case is the default case in our program. This
means that when none of the cases are met, the program will
run the blocks for the red case, and the program will say “Red”
when the Color Sensor reads anything other than red, blue, or
No Color (for example, yellow or green). It makes more sense to
set the No Color case as the default. This way, the program will
say “Uh-oh” whenever it doesn’t detect red or blue.

8. Click the Default Case button on the No Color case.

Figure 6-16 shows the final configuration of the Switch block.

the loop
block

The Loop block lets you repeat a group of blocks over and
over. The blocks inside a Loop block are called the loop body.
You set a condition that controls how often the loop body is
repeated and determines when the program moves on to the
block that appears after the Loop block.

The modes for the Loop block, shown in Figure 6-17,
include the same sensor modes as the Switch block, plus four
additional modes:

Figure 6-13: Identifying red or blue objects Figure 6-14: adding a new case Figure 6-15: The No Color case Figure 6-16: Setting the default to No Color Figure 6-17: Selecting the loop block mode

78 ChapTer 6

the loop
interrupt block

The Loop Interrupt block, shown in Figure 6-19, gives you
another way to exit a loop. The block only has one parameter:
the name of the loop to exit. Each Loop block has a tab at the
top of the block that holds the name of the loop, shown in Fig-
ure 6-20. A loop is named 01 by default; you can click the
name to change it.

The Loop Interrupt block shows only the first three letters
of the name of the Loop block it will interrupt. As a result, it’s
usually clearer to use numbers or short abbreviations for the
loop names; otherwise, it may not be clear which loop a Loop
Interrupt block refers to.

the BumperBot3 program

Now you’ll make some changes to the BumperBot2 program to
learn how the Loop Interrupt block works. To use this program,
return the TriBot to its original configuration, with the Touch
Sensor bumper mounted on the front and the Light Color Sen-
sor on the side, as shown in Figure 6-21.

The changes you’ll make will exit the loop and stop the
program when you turn off the lights in the room. Figure 6-22
shows the part of the original program that we’ll change.
So far, the program makes the robot move forward and
wait for the Touch Sensor to be pressed. When the sensor is
pressed, the robot backs up, and the program loops back to
the beginning.

Now you’ll change the program to make the robot check
the Color Sensor while it’s waiting. If the Color Sensor reading
is very low, indicating that the lights have been turned off, then
the Loop Interrupt block exits the loop and the program ends
because there are no more blocks after the Loop block.

Instead of using the Wait block to detect when the bumper
is pressed, we’ll use a Loop block, as shown in Figure 6-23,
that repeats until the Touch Sensor is pressed. Inside the body
of the loop, we’ll use a Switch block in Ambient Light Intensity
mode to check the ambient light level of the room. If the Color
Sensor doesn’t detect enough light, the program will stop the
motors, say “Goodbye,” and then exit the loop.

Follow these steps to create the new BumperBot3 pro-
gram shown in Figure 6-23:

1. Copy the BumperBot2 program from the Chapter5 project
to the Chapter6 project.

2. Change the name of the program to BumperBot3.

3. Change the name of the main Loop block to 02.

Figure 6-19: The

loop Interrupt block
Figure 6-20: The loop block name

Figure 6-21: TriBot configuration for the BumperBot3 program

Figure 6-23: The BumperBot3 program

Figure 6-22: The BumperBot2 program

 program Flow 79

4. Delete the Wait block.

5. Add a Loop block where the Wait block was.

6. Set the Loop block’s mode to Touch Sensor -
Compare - State.

This part of the program should now look like Figure 6-24.

At this point, the empty Loop block does the same thing as
the Wait block it replaced: It simply waits for the Touch Sensor
to be pressed. But within the Loop block, we can now add some
blocks that will run while the program is waiting.

The next step adds a Switch block inside the Loop block to
check the Color Sensor:

7. Drag a Switch block into the Loop block.

8. Set the mode of the Switch block to Color Sensor -
Compare - Ambient Light Intensity.

9. Set the Threshold value to 10. You can adjust this value
after some testing if it’s too high or too low. The Loop
block should look like Figure 6-25.

Instead of using the Wait block to detect when the bumper
is pressed, we’ll use a Loop block, as shown in Figure 6-23,
that repeats until the Touch Sensor is pressed. Inside the body
of the loop, we’ll use a Switch block in Ambient Light Intensity
mode to check the ambient light level of the room. If the Color
Sensor doesn’t detect enough light, the program will stop the
motors, say “Goodbye,” and then exit the loop.

Follow these steps to create the new BumperBot3 pro-
gram shown in Figure 6-23:

1. Copy the BumperBot2 program from the Chapter5 project
to the Chapter6 project.

2. Change the name of the program to BumperBot3.

3. Change the name of the main Loop block to 02.

Figure 6-23: The BumperBot3 program

Figure 6-25: adding the Switch block

Figure 6-24: replacing the wait block with a loop block

80 ChapTer 6

When the Switch block runs, it checks the Color Sensor,
and if the light intensity is below 10, the blocks on the upper
case will run. Now add the following blocks:

10. Drag a Move Steering block to the upper case of the
Switch block, and set the mode to Off.

11. Add a Sound block after the Move block. Select Goodbye
from the list of sound files (it’s under LEGO Sound Files4
Communication).

12. Add a Loop Interrupt block after the Sound block. Set the
Loop Name to 02.

Figure 6-26 shows the Loop block with these changes.
Now when you run the program, it should say “Goodbye”

and stop if the lights in the room go out. To test the program,
you can hold the TriBot in your hand, and after the wheels start
moving, cover the Color Sensor with your other hand. When you
cover the Color Sensor, the light level drops and the program
should say “Goodbye” and exit.

further
exploration

Now that you’ve learned the nuances of the Switch and Loop
blocks, here are some activities to practice using them:

1. Write a program that makes the robot follow you—staying
close to you but not too close, say between one and two
feet. Use the Infrared or Ultrasonic Sensor and a Switch

block to make the robot move forward or backward if you
are too close or too far away. The robot should not move if
you are in the desired range.

2. Use the Infrared Remote to add a pause and resume func-
tion to the BumperBot3 program. Add a new Switch block
that checks to see if a button on the remote is pressed.
If it’s pressed, the program should stop the motors, wait
for another button on the remote to be pressed, and then
start the motors again. The first button acts as a pause
button, and the second button acts as a resume button.

conclusion
In this chapter, you learned to use the Switch block to make
decisions, allowing you to choose between two or more groups of
blocks. Either by nesting Switch blocks or by adding extra cases
to a tabbed Switch block, you can extend the number of choices.

The other major flow control block is the Loop block, which
allows you to repeat a group of blocks until a certain condition
is reached. Much of the power of EV3 programs comes from the
flexibility that’s available when configuring blocks. The condition
usually compares a sensor reaching a set Threshold value, but
you can also configure the Loop block to repeat for a certain
number of repetitions or a set amount of time. The Loop Inter-
rupt block provides another way to exit a Loop block, which gives
you even more flexibility to control how your program works.

At this point, you’ve seen how to use the EV3 motors and
sensors and learned about the programming blocks you need to
build sophisticated programs. In the next chapter, you’ll use this
knowledge to program the TriBot to find its way out of a maze.

Figure 6-26: Stopping the motors

and saying “goodbye”

