

 B R I E F C O N T E N T S

About the Author and the Technical Reviewer ..xvii

Foreword by John Baldwin ...xix

Acknowledgments ...xxi

Introduction ..xxiii

Chapter 1: Building and Running Modules ...1

Chapter 2: Allocating Memory ...17

Chapter 3: Device Communication and Control ..27

Chapter 4: Thread Synchronization ...53

Chapter 5: Delaying Execution ...83

Chapter 6: Case Study: Virtual Null Modem...99

Chapter 7: Newbus and Resource Allocation ...113

Chapter 8: Interrupt Handling...125

Chapter 9: Case Study: Parallel Port Printer Driver ..141

Chapter 10: Managing and Using Resources ...165

Chapter 11: Case Study: Intelligent Platform Management Interface Driver.........................183

Chapter 12: Direct Memory Access ...193

viii Br ie f Contents

Chapter 13: Storage Drivers...207

Chapter 14: Common Access Method ...225

Chapter 15: USB Drivers..257

Chapter 16: Network Drivers, Part 1: Data Structures ..283

Chapter 17: Network Drivers, Part 2: Packet Reception and Transmission299

References..309

Index ...311

N E W B U S A N D R E S O U R C E
A L L O C A T I O N

Until now, we’ve examined only pseudo-
devices, which provide a superb introduction

to driver writing. However, most drivers need to
interact with real hardware. This chapter shows you
how to write drivers that do just that.

I’ll start by introducing Newbus, which is the infrastructure used in
FreeBSD to manage the hardware devices on the system (McKusick and
Neville-Neil, 2005). I’ll then describe the basics of a Newbus driver, and
I’ll conclude this chapter by talking about hardware resource allocation.

Autoconfiguration and Newbus Drivers

Autoconfiguration is the procedure carried out by FreeBSD to enable the hard-
ware devices on a machine (McKusick and Neville-Neil, 2005). It works by sys-
tematically probing a machine’s I/O buses in order to identify their child

FreeBSD Device Drivers
©2012, Joe Kong

114 Chapter 7

devices. For each identified device, an appropriate Newbus driver is assigned
to configure and initialize it. Note that it’s possible for a device to be uniden-
tifiable or unsupported. As a result, no Newbus driver will be assigned.

A Newbus driver is any driver in FreeBSD that controls a device that is
bound to an I/O bus (that is, roughly every driver that is not a pseudo-device
driver).

In general, three components are common to all Newbus drivers:

 The device_foo functions

 A device method table

 A DRIVER_MODULE macro call

device_foo Functions
The device_foo functions are, more or less, the operations executed by a
Newbus driver during autoconfiguration. Table 7-1 briefly introduces each
device_foo function.

The device_identify function adds a new device (instance) to an I/O bus.
This function is used only by buses that cannot directly identify their children.
Recall that autoconfiguration begins by identifying the child devices on each
I/O bus. Modern buses can directly identify the devices that are connected
to them. Older buses, such as ISA, have to use the device_identify routine
provided by their associated drivers to identify their child devices (McKusick
and Neville-Neil, 2005). You’ll learn how to associate a driver with an I/O bus
shortly.

All identified child devices are passed to every Newbus driver’s device_probe
function. A device_probe function tells the kernel whether its driver can han-
dle the identified device.

Note that there may be more than one driver that can handle an identi-
fied child device. Thus, device_probe’s return value is used to specify how well
its driver matches the identified device. The device_probe function that returns

Table 7-1: device_foo Functions

Function Description

device_identify Add new device to I/O bus

device_probe Probe for specific device(s)

device_attach Attach to device

device_detach Detach from device

device_shutdown Shut down device

device_suspend Device suspend requested

device_resume Resume has occurred

FreeBSD Device Drivers
©2012, Joe Kong

Newbus and Resource Al locat ion 115

the highest value denotes the best Newbus driver for the identified device.
The following excerpt from <sys/bus.h> shows the constants used to indicate
success (that is, a match):

#define BUS_PROBE_SPECIFIC 0 /* Only I can use this device. */
#define BUS_PROBE_VENDOR (-10) /* Vendor-supplied driver. */
#define BUS_PROBE_DEFAULT (-20) /* Base OS default driver. */
#define BUS_PROBE_LOW_PRIORITY (-40) /* Older, less desirable driver. */
#define BUS_PROBE_GENERIC (-100) /* Generic driver for device. */
#define BUS_PROBE_HOOVER (-500) /* Driver for all devices on bus. */
#define BUS_PROBE_NOWILDCARD (-2000000000) /* No wildcard matches. */

As you can see, success codes are values less than or equal to zero. The
standard UNIX error codes (that is, positive values) are used as failure codes.

Once the best driver has been found to handle a device, its device_attach
function is called. A device_attach function initializes a device and any essen-
tial software (for example, device nodes).

The device_detach function disconnects a driver from a device. This func-
tion should set the device to a sane state and release any resources that were
allocated during device_attach.

A Newbus driver’s device_shutdown, device_suspend, and device_resume func-
tions are called when the system is shut down, when its device is suspended,
or when its device returns from suspension, respectively. These functions let
a driver manage its device as these events occur.

Device Method Table
A device method table, device_method_t, specifies which device_foo functions a
Newbus driver implements. It is defined in the <sys/bus.h> header.

Here is an example device method table for a fictitious PCI device:

static device_method_t foo_pci_methods[] = {
 /* Device interface. */
 DEVMETHOD(device_probe, foo_pci_probe),
 DEVMETHOD(device_attach, foo_pci_attach),
 DEVMETHOD(device_detach, foo_pci_detach),
 { 0, 0 }
};

As you can see, not every device_foo function has to be defined. If a
device_foo function is undefined, the corresponding operation is unsupported.

Unsurprisingly, the device_probe and device_attach functions must be
defined for every Newbus driver. For drivers on older buses, the device_identify
function must also be defined.

FreeBSD Device Drivers
©2012, Joe Kong

116 Chapter 7

DRIVER_MODULE Macro
The DRIVER_MODULE macro registers a Newbus driver with the system. This
macro is defined in the <sys/bus.h> header. Here is its function prototype:

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>

DRIVER_MODULE(name, busname, driver_t driver, devclass_t devclass,
 modeventhand_t evh, void *arg);

The arguments expected by this macro are as follows.

name

The name argument is used to identify the driver.

busname

The busname argument specifies the driver’s I/O bus (for example, isa, pci,
usb, and so on).

driver

The driver argument expects a filled-out driver_t structure. This argument is
best understood with an example:

static driver_t foo_pci_driver = {
 "foo_pci",
 foo_pci_methods,
 sizeof(struct foo_pci_softc)
};

Here, "foo_pci" is this example driver’s official name, foo_pci_methods
is its device method table, and sizeof(struct foo_pci_softc) is the size of its
software context.

devclass

The devclass argument expects an uninitialized devclass_t variable, which will
be used by the kernel for internal bookkeeping.

evh

The evh argument denotes an optional module event handler. Generally,
we’ll always set evh to 0, because DRIVER_MODULE supplies its own module event
handler.

arg

The arg argument is the void * argument for the module event handler spec-
ified by evh. If evh is set to 0, arg must be too.

FreeBSD Device Drivers
©2012, Joe Kong

Newbus and Resource Al locat ion 117

Tying Everything Together

You now know enough to write your first Newbus driver. Listing 7-1 is a sim-
ple Newbus driver (based on code written by Murray Stokely) for a fictitious
PCI device.

NOTE Take a quick look at this code and try to discern some of its structure. If you don’t
understand all of it, don’t worry; an explanation follows.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/bus.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

 struct foo_pci_softc {
device_t device;
struct cdev *cdev;

};

static d_open_t foo_pci_open;
static d_close_t foo_pci_close;
static d_read_t foo_pci_read;
static d_write_t foo_pci_write;

 static struct cdevsw foo_pci_cdevsw = {
 .d_version = D_VERSION,
 .d_open = foo_pci_open,
 .d_close = foo_pci_close,
 .d_read = foo_pci_read,
 .d_write = foo_pci_write,
 .d_name = "foo_pci"
};

 static devclass_t foo_pci_devclass;

static int
foo_pci_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
 struct foo_pci_softc *sc;

 sc = dev->si_drv1;
 device_printf(sc->device, "opened successfully\n");
 return (0);
}

FreeBSD Device Drivers
©2012, Joe Kong

118 Chapter 7

static int
foo_pci_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
 struct foo_pci_softc *sc;

 sc = dev->si_drv1;
 device_printf(sc->device, "closed\n");
 return (0);
}

static int
foo_pci_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 struct foo_pci_softc *sc;

 sc = dev->si_drv1;
 device_printf(sc->device, "read request = %dB\n", uio->uio_resid);
 return (0);
}

static int
foo_pci_write(struct cdev *dev, struct uio *uio, int ioflag)
{
 struct foo_pci_softc *sc;

 sc = dev->si_drv1;
 device_printf(sc->device, "write request = %dB\n", uio->uio_resid);
 return (0);
}

static struct _pcsid {
 uint32_t type;
 const char *desc;
} pci_ids[] = {
 { 0x1234abcd, "RED PCI Widget" },
 { 0x4321fedc, "BLU PCI Widget" },
 { 0x00000000, NULL }
};

static int
foo_pci_probe(device_t dev)
{
 uint32_t type = pci_get_devid(dev);
 struct _pcsid *ep = pci_ids;

 while (ep->type && ep->type != type)
 ep++;
 if (ep->desc) {
 device_set_desc(dev, ep->desc);
 return (BUS_PROBE_DEFAULT);
 }

 return (ENXIO);
}

FreeBSD Device Drivers
©2012, Joe Kong

Newbus and Resource Al locat ion 119

static int
foo_pci_attach(device_t dev)
{
 struct foo_pci_softc *sc = device_get_softc(dev);
 int unit = device_get_unit(dev);

 sc->device = dev;
 sc->cdev = make_dev(&foo_pci_cdevsw, unit, UID_ROOT, GID_WHEEL,
 0600, "foo_pci%d", unit);
 sc->cdev->si_drv1 = sc;

 return (0);
}

static int
foo_pci_detach(device_t dev)
{
 struct foo_pci_softc *sc = device_get_softc(dev);

 destroy_dev(sc->cdev);
 return (0);
}

static device_method_t foo_pci_methods[] = {
 /* Device interface. */
 DEVMETHOD(device_probe, foo_pci_probe),
 DEVMETHOD(device_attach, foo_pci_attach),
 DEVMETHOD(device_detach, foo_pci_detach),
 { 0, 0 }
};

static driver_t foo_pci_driver = {
 "foo_pci",
 foo_pci_methods,
 sizeof(struct foo_pci_softc)
};

 DRIVER_MODULE(foo_pci, pci, foo_pci_driver, foo_pci_devclass, 0, 0);

Listing 7-1: foo_pci.c

This driver begins by defining its software context, which will maintain
a pointer to its device and the cdev returned by the make_dev call.

Next, its character device switch table is defined. This table contains
four d_foo functions named foo_pci_open, foo_pci_close, foo_pci_read, and
foo_pci_write. I’ll describe these functions in “d_foo Functions” on page 121.

Then a devclass_t variable is declared. This variable is passed to the
 DRIVER_MODULE macro as its devclass argument.

Finally, the d_foo and device_foo functions are defined. These functions
are described in the order they would execute.

FreeBSD Device Drivers
©2012, Joe Kong

120 Chapter 7

foo_pci_probe Function
The foo_pci_probe function is the device_probe implementation for this driver.
Before I walk through this function, a description of the pci_ids array (found
around the middle of Listing 7-1) is needed.

static struct _pcsid {
uint32_t type;
const char *desc;

} pci_ids[] = {
 { 0x1234abcd, "RED PCI Widget" },
 { 0x4321fedc, "BLU PCI Widget" },
 { 0x00000000, NULL }
};

This array is composed of three _pcsid structures. Each _pcsid structure
contains a PCI ID and a description of the PCI device. As you might
have guessed, pci_ids lists the devices that Listing 7-1 supports.

Now that I’ve described pci_ids, let’s walk through foo_pci_probe.

static int
foo_pci_probe(device_t dev)
{
 uint32_t type = pci_get_devid(dev);
 struct _pcsid *ep = pci_ids;

while (ep->type && ep->type != type)
 ep++;
 if (ep->desc) {

device_set_desc(dev, ep->desc);
return (BUS_PROBE_DEFAULT);

 }

 return (ENXIO);
}

Here, dev describes an identified device found on the PCI bus. So this
function begins by obtaining the PCI ID of dev. Then it determines if dev’s
PCI ID is listed in pci_ids. If it is, dev’s verbose description is set and the
success code BUS_PROBE_DEFAULT is returned.

NOTE The verbose description is printed to the system console when foo_pci_attach executes.

foo_pci_attach Function
The foo_pci_attach function is the device_attach implementation for this
driver. Here is its function definition (again):

static int
foo_pci_attach(device_t dev)
{
 struct foo_pci_softc *sc = device_get_softc(dev);

FreeBSD Device Drivers
©2012, Joe Kong

Newbus and Resource Al locat ion 121

 int unit = device_get_unit(dev);

 sc->device = dev;
 sc->cdev = make_dev(&foo_pci_cdevsw, unit, UID_ROOT, GID_WHEEL,
 0600, "foo_pci%d", unit);
 sc->cdev->si_drv1 = sc;

 return (0);
}

Here, dev describes a device under this driver’s control. Thus, this
function starts by getting dev’s software context and unit number.
Then a character device node is created and the variables sc->device and
sc->cdev->si_drv1 are set to dev and sc, respectively.

NOTE The d_foo functions (described next) use sc->device and cdev->si_drv1 to gain access
to dev and sc.

d_foo Functions
Because every d_foo function in Listing 7-1 just prints a debug message (that
is to say, they’re all basically the same), I’m only going to walk through one
of them: foo_pci_open.

static int
foo_pci_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
 struct foo_pci_softc *sc;

sc = dev->si_drv1;
device_printf(sc->device, "opened successfully\n");

 return (0);
}

Here, dev is the cdev returned by the make_dev call in foo_pci_attach. So,
this function first obtains its software context. Then it prints a debug
message.

foo_pci_detach Function
The foo_pci_detach function is the device_detach implementation for this
driver. Here is its function definition (again):

static int
foo_pci_detach(device_t dev)
{
 struct foo_pci_softc *sc = device_get_softc(dev);

destroy_dev(sc->cdev);
 return (0);
}

FreeBSD Device Drivers
©2012, Joe Kong

122 Chapter 7

Here, dev describes a device under this driver’s control. Thus, this
function simply obtains dev’s software context to destroy its device node.

Don’t Panic
Now that we’ve discussed Listing 7-1, let’s give it a try:

$ sudo kldload ./foo_pci.ko
$ kldstat
Id Refs Address Size Name
 1 3 0xc0400000 c9f490 kernel
 2 1 0xc3af0000 2000 foo_pci.ko
$ ls -l /dev/foo*
ls: /dev/foo*: No such file or directory

Of course, it fails miserably, because foo_pci_probe is probing for ficti-
tious PCI devices. Before concluding this chapter, one additional topic bears
mentioning.

Hardware Resource Management

As part of configuring and operating devices, a driver might need to manage
hardware resources, such as interrupt-request lines (IRQs), I/O ports, or
I/O memory (McKusick and Neville-Neil, 2005). Naturally, Newbus includes
several functions for doing just that.

#include <sys/param.h>
#include <sys/bus.h>

#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>

struct resource *
bus_alloc_resource(device_t dev, int type, int *rid, u_long start,
 u_long end, u_long count, u_int flags);

struct resource *
bus_alloc_resource_any(device_t dev, int type, int *rid,
 u_int flags);

int
bus_activate_resource(device_t dev, int type, int rid,
 struct resource *r);

int
bus_deactivate_resource(device_t dev, int type, int rid,
 struct resource *r);

int
bus_release_resource(device_t dev, int type, int rid,
 struct resource *r);

FreeBSD Device Drivers
©2012, Joe Kong

Newbus and Resource Al locat ion 123

The bus_alloc_resource function allocates hardware resources for a spe-
cific device to use. If successful, a struct resource pointer is returned; other-
wise, NULL is returned. This function is normally called during device_attach.
If it is called during device_probe, all allocated resources must be released
(via bus_release_resource) before returning. Most of the arguments for
bus_alloc_resource are common to the other hardware resource management
functions. These arguments are described in the next few paragraphs.

The dev argument is the device that requires ownership of the hardware
resource(s). Before allocation, resources are owned by the parent bus.

The type argument represents the type of resource dev wants allocated.
Valid values for this argument are listed in Table 7-2.

The rid argument expects a resource ID (RID). If bus_alloc_resource is
successful, a RID is returned in rid that may differ from what you passed.
You’ll learn more about RIDs later.

The start and end arguments are the start and end addresses of the hard-
ware resource(s). To employ the default bus values, simply pass 0ul as start
and ~0ul as end.

The count argument denotes the size of the hardware resource(s). If you
used the default bus values for start and end, count is used only if it is larger
than the default bus value.

The flags argument details the characteristics of the hardware resource.
Valid values for this argument are listed in Table 7-3.

The bus_alloc_resource_any function is a convenience wrapper for
bus_alloc_resource that sets start, end, and count to their default bus values.

The bus_activate_resource function activates a previously allocated hard-
ware resource. Naturally, resources must be activated before they can be used.
Most drivers simply pass RF_ACTIVE to bus_alloc_resource or bus_alloc_resource_any
to avoid calling bus_activate_resource.

Table 7-2: Symbolic Constants for Hardware Resources

Constant Description

SYS_RES_IRQ Interrupt-request line

SYS_RES_IOPORT I/O port

SYS_RES_MEMORY I/O memory

Table 7-3: bus_alloc_resource Symbolic Constants

Constant Description

RF_ALLOCATED Allocate hardware resource, but don’t activate it

RF_ACTIVE Allocate hardware resource and activate resource automatically

RF_SHAREABLE Hardware resource permits contemporaneous sharing; you should
always set this flag, unless the resource cannot be shared

RF_TIMESHARE Hardware resource permits time-division sharing

FreeBSD Device Drivers
©2012, Joe Kong

124 Chapter 7

The bus_deactivate_resource function deactivates a hardware resource.
This function is primarily used in bus drivers (so we’ll never call it).

The bus_release_resource function releases a previously allocated hard-
ware resource. Of course, the resource cannot be in use on release. If suc-
cessful, 0 is returned; otherwise, the kernel panics.

NOTE We’ll cover an example that employs IRQs in Chapters 8 and 9, and I’ll go over an
example that requires I/O ports and I/O memory in Chapters 10 and 11.

Conclusion

This chapter introduced you to the basics of Newbus driver development—
working with real hardware. The remainder of this book builds upon the
concepts described here to complete your understanding of Newbus.

FreeBSD Device Drivers
©2012, Joe Kong

